Photovoltaic modeling handbook / edited by Monika Freunek Müller.

Contributor(s): Müller, Monika Freunek [editor.]
Language: English Series: Advances in hydrogen production and storagePublisher: Hoboken, New Jersey : Wiley-Scrivener, [2018]Description: 1 online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9781119364207 (ePub); 9781119364191 (Adobe PDF); 9781119364214Subject(s): Photovoltaic power generation -- Mathematical modelsGenre/Form: Electronic booksDDC classification: 621.31/244 LOC classification: TK1087Online resources: Full text is available at Wiley Online Library Click here to view
Contents:
Contents Preface 000 1. Introduction 1 Monika Freunek (Muller) References 5 2. Fundamental Limits of Solar Energy Conversion 7 Thorsten Trupke and Peter Wurfel 2.1. Introduction 2.2. The Carnot Efficiency - A Realistic Limit for PV Conversion? 2.3. Solar Cell Absorbers - Converting Heat into Chemical 2.4. No Junction Required - The IV Curve of a Uniform Absorber 2.5. Limiting Efficiency Calculations 2.6. Real Solar Cell Structures 2.7. Beyond the Shockley Queisser Limit 2.8. Summary and Conclusions Acknowledgement References 3. Optical Modeling of Photovoltaic Modules Carsten Schinke, Malte R.Vogt, and Karsten Bothe 3.1. Introduction 3.1.1. Terminology 3.1.2. Simulation object 3.1.3. Photon (Light ray) 3.1.4. Light source 3.1.5. Simulation domain 3.1.6. Simulation scene 3.1.7. Photon marker 3.1.8. Surface effects with Ray Tracing Simulations 27 3.1.9. Boundary conditions 32 3.1.10. Photon shifters 32 3.2. Basics of Optical Ray Tracing Simulations 32 3.2.1. Ray Optics 32 3.2.1.1. Basic Assumptions 33 3.2.1.2. Absorption of Light 33 3.2.1.3. Refraction of Light at Interfaces 34 3.2.1.4. Modeling of Thin Films 35 3.2.2. Ray Tracing 37 3.2.3. Monte-Carlo Particle Tracing 38 3.2.4. Statistical Uncertainty of Monte-Carlo Results 40 3.2.5. Generating Random Numbers with Non-Uniform Distributions 42 3.3. Modeling Illumination 46 3.3.1. Basic Light Sources 46 3.3.2. Modeling Realistic Illumination Conditions 48 3.3.2.1. Preprocessing of Irradiance Data 49 3.3.2.2. Implementation for Ray Tracing 50 3.3.2.3. Application Example 52 3.4. Specific Issues for Ray Tracing of Photovoltaic Modules 53 3.4.1. Geometries and Symmetries in PV Devices 55 3.4.2. Multi-Domain Approach 57 3.4.2.1. Module domain 59 3.4.2.2. Front Finger Domain 60 3.4.2.3. Front Texture Domain 60 3.4.2.4. Rear Side Domains 61 3.4.3. Post processing of Simulation Results 61 3.4.4. Ray Tracing Application Examples 64 3.4.4.1. Validation of Simulation Results 64 3.4.4.2. Optical Loss Analysis: From Cell to Module 66 3.4.4.3. Bifacial Solar Cells and Modules 68 3.5. From Optics to Power Output 69 3.5.1. Calculation Chain: From Ray Tracing to Module Power Output 70 3.5.1.1. Inclusion of the Irradiation Spectrum 73 3.5.1.2. Calculation of Module Output Power 74 3.5.1.3. Outlook: Energy Yield Calculation 75 3.5.2. Application Examples 76 3.5.2.1. Calculation of Short Circuit Current and Power Output 76 3.5.2.2. Current Loss Analysis: Standard Testing Conditions vs. Field Conditions 79 3.6. Overview of Optical Simulation Tools for PV Devices 80 3.6.1. Analysis of Solar Cells 80 3.6.2. Analysis of PV Modules and Their Surrounding 82 3.6.3. Further Tools Which Are not Publicly Available 82 Acknowledgments 85 References 85 4 Optical Modelling and Simulations of Thin-Film Silicon Solar Cells 93 Janez Krc, Martin Sever, Benjamin Lipovsek, Andrej Campa and Marko Topic 4.1. Introduction 94 4.2. Approaches of Optical Modelling 95 4.2.1. One-Dimensional Optical Modelling 96 4.2.2. Two- and Three-Dimensional Rigorous Optical Modelling 97 4.2.3. Challenges in Optical Modelling 97 4.3. Selected Methods and Approaches 98 4.3.1. Finite Element Method 98 4.3.2. Coupled Modelling Approach 100 4.4. Examples of Optical Modelling and Simulations 102 4.4.1. Texture Optimization Applying Spatial Fourier Analysis 103 4.4.2. Model of Non-Conformal Layer Growth 110 4.4.3. Optical Simulations of Tandem Thin-Film Silicon Solar Cell 118 4.5. The Role of Illumination Spectrum 129 4.6. Conclusion 133 Acknowledgement 134 References 135 5 Modelling of Organic Photovoltaics 141 5.1. Introduction to Organic Photovoltaics 141 5.2. Performance of Organic Photovoltaics 143 5.3. Charge Transport in Organic Semiconductors 145 5.4. Energetic Disorder in Organic Semiconductors 150 5.5. Morphology of Organic Materials 153 5.6. Considerations for Photovoltaics 155 5.6.1. Excitons in Organic Semiconductors 155 5.6.2. Optical Absorption in Organic Photovoltaics 160 5.6.3. Carrier Harvesting in Organic Photovoltaics 161 5.7. Simulation Methods of Organic Photovoltaics 163 5.7.1. Lattice Morphologies and Device Geometry 163 5.7.2. Gaussian Disorder Model 164 5.7.3. Kinetic Monte Carlo Methods 164 5.7.4. Electrostatic Interactions 168 5.7.5. Neighbour Lists 169 5.8. Considerations When Modelling Organic Photovoltaics 169 5.8.1. The Next Steps for OPV Modelling 171 Acknowledgements 172 References 172 6 Modeling the Device Physics of Chalcogenide Thin Film Solar Cells 177 Nima E. Gorji and Lindsay Kuhn 6.1. Introduction 177 6.2. Kosyachenko's Approach: Carrier Transport 178 6.3. Demtsu-Sites Approach: Double-Diode Model 181 6.4. Kosyachenko's Approach: Optical Loss Modeling 184 6.5. Karpov's Approach 186 6.6. Conclusion 187 Acknowledgements 188 References 188 7 Temperature and Irradiance Dependent Efficiency Model for GaInP-GaInAs-Ge Multijunction Solar Cells 191 Monika Freunek Mueller, Bruno Michel and Harold J. Hovel 7.1. Motivation 191 7.2. Efficiency Model 196 7.3. Results And Discussion 209 7.4. Conclusions 211 7.5. Acknowledgments 211 References 212 Appendix: Shockley-Queisser-Modell Calculations 213 8 Variation of Output with Environmental Factors 217 Youichi Hirata, Yuzuru Ueda, Shinichiro Oke and Naotoshi Sekiguchi 8.1. Conversion Efficiency and Standard Test Conditions (STC) 218 8.2. Variation of I-V curve with Each Environmental Factor 218 8.2.1. Irradiance 219 8.2.2. Cell Temperature 221 8.2.3. Spectral Response 222 8.3. Example of Measurement of Spectral Distribution of Solar Radiation 222 8.3.1. Example of Changes with Weather 223 8.3.2. Spectral Variation with Season 225 8.3.3. Effect of Variation in Spectral Solar Radiation 226 8.4. Irradiance 227 8.5. Effects on Performance of PV Modules/Cells 229 8.5.1. System Configurations and Measurements 229 8.5.2. Evaluation Methods 231 8.5.2.1. Performance Ratio 231 8.5.2.2. Effective Array Peak Power of PV Systems 233 8.5.3. Measurement Results 233 8.5.3.1. Performance Ratios 233 8.5.3.2. Degradation Rates 234 8.6. Cell Temperature 236 8.6.1. Output Energy by Temperature Coefficient 236 8.6.2. Output Energy with Different Installation Method 237 8.7. Results for Concentrated Photovoltaics 239 8.7.1. Introduction 239 8.7.2. Field Test of a CPV Module 239 8.7.3. Decline of Efficiency of the Early-Type CPV Module 239 8.7.4. Influences of the Degradation 241 Acknowledgments 243 References 244 9 Modeling of Indoor Photovoltaic Devices Monika Freunek (Muller) 9.1. Introduction 245 9.1.1. Brief History of IPV 246 9.1.2. Characteristics of IPV Modeling 247 9.2. Indoor Radiation 248 9.2.1. Modeling Indoor Spectral Irradiance 250 9.3. Maximum Efficiencies 251 9.3.1. Intensity effects 255 9.4. Demonstrated Efficiencies and Further Optimization 257 9.5. Characterization and Measured Efficiencies 261 9.5.1. Irradiance Measurements 261 9.6. Outlook 262 9.7. Acknowledgement 264 References 264 10 Modelling Hysteresis in Perovskite Solar Cells 267 James M Cave and Alison B Walker 10.1. Introduction to Perovskite Solar Cells 267 Acknowledgements 277 References 277 Index 000.
Summary: This book provides the reader with a solid understanding of the fundamental modeling of photovoltaic devices. After the material independent limit of photovoltaic conversion, the readers are introduced to the most well-known theory of "classical" silicon modeling. Based on this, for each of the most important PV materials, their performance under different conditions is modeled. This book also covers different modeling approaches, from very fundamental theoretic investigations to applied numeric simulations based on experimental values. The book concludes wth a chapter on the influence of spectral variations. The information is supported by providing the names of simulation software and basic literature to the field. The information in the book gives the user specific application with a solid background in hand, to judge which materials could be appropriate as well as realistic expectations of the performance the devices could achieve.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Home library Call number Status Date due Barcode Item holds
EBOOK EBOOK COLLEGE LIBRARY
COLLEGE LIBRARY
LIC Gateway
621.31244 P5669 2018 (Browse shelf) Available 50274
Total holds: 0

Includes bibliographical references and index.

Contents

Preface
000
1. Introduction
1 Monika Freunek (Muller) References
5
2. Fundamental Limits of Solar Energy Conversion
7 Thorsten Trupke and Peter Wurfel 2.1. Introduction 2.2. The Carnot Efficiency - A Realistic Limit for PV Conversion? 2.3. Solar Cell Absorbers - Converting Heat into Chemical 2.4. No Junction Required - The IV Curve of a Uniform Absorber 2.5. Limiting Efficiency Calculations 2.6. Real Solar Cell Structures 2.7. Beyond the Shockley Queisser Limit 2.8. Summary and Conclusions Acknowledgement References
3. Optical Modeling of Photovoltaic Modules Carsten Schinke, Malte R.Vogt, and Karsten Bothe 3.1. Introduction 3.1.1. Terminology 3.1.2. Simulation object 3.1.3. Photon (Light ray) 3.1.4. Light source 3.1.5. Simulation domain 3.1.6. Simulation scene 3.1.7. Photon marker 3.1.8. Surface effects with Ray Tracing Simulations
27 3.1.9. Boundary conditions
32 3.1.10. Photon shifters
32 3.2. Basics of Optical Ray Tracing Simulations
32 3.2.1. Ray Optics
32 3.2.1.1. Basic Assumptions
33 3.2.1.2. Absorption of Light
33 3.2.1.3. Refraction of Light at Interfaces
34 3.2.1.4. Modeling of Thin Films
35 3.2.2. Ray Tracing
37 3.2.3. Monte-Carlo Particle Tracing
38 3.2.4. Statistical Uncertainty of Monte-Carlo Results
40 3.2.5. Generating Random Numbers with Non-Uniform Distributions
42 3.3. Modeling Illumination
46 3.3.1. Basic Light Sources
46 3.3.2. Modeling Realistic Illumination Conditions
48 3.3.2.1. Preprocessing of Irradiance Data
49 3.3.2.2. Implementation for Ray Tracing
50 3.3.2.3. Application Example
52 3.4. Specific Issues for Ray Tracing of Photovoltaic Modules
53 3.4.1. Geometries and Symmetries in PV Devices
55 3.4.2. Multi-Domain Approach
57 3.4.2.1. Module domain
59 3.4.2.2. Front Finger Domain
60 3.4.2.3. Front Texture Domain
60 3.4.2.4. Rear Side Domains
61 3.4.3. Post processing of Simulation Results
61 3.4.4. Ray Tracing Application Examples
64 3.4.4.1. Validation of Simulation Results
64 3.4.4.2. Optical Loss Analysis: From Cell to Module
66 3.4.4.3. Bifacial Solar Cells and Modules
68 3.5. From Optics to Power Output
69 3.5.1. Calculation Chain: From Ray Tracing to Module Power Output
70 3.5.1.1. Inclusion of the Irradiation Spectrum
73 3.5.1.2. Calculation of Module Output Power
74 3.5.1.3. Outlook: Energy Yield Calculation
75 3.5.2. Application Examples
76 3.5.2.1. Calculation of Short Circuit Current and Power Output
76 3.5.2.2. Current Loss Analysis: Standard Testing Conditions vs. Field Conditions
79 3.6. Overview of Optical Simulation Tools for PV Devices
80 3.6.1. Analysis of Solar Cells
80 3.6.2. Analysis of PV Modules and Their Surrounding
82 3.6.3. Further Tools Which Are not Publicly Available
82 Acknowledgments
85 References
85
4 Optical Modelling and Simulations of Thin-Film Silicon Solar Cells
93 Janez Krc, Martin Sever, Benjamin Lipovsek, Andrej Campa and Marko Topic 4.1. Introduction
94 4.2. Approaches of Optical Modelling
95 4.2.1. One-Dimensional Optical Modelling
96 4.2.2. Two- and Three-Dimensional Rigorous Optical Modelling
97 4.2.3. Challenges in Optical Modelling
97 4.3. Selected Methods and Approaches
98 4.3.1. Finite Element Method
98 4.3.2. Coupled Modelling Approach
100 4.4. Examples of Optical Modelling and Simulations
102 4.4.1. Texture Optimization Applying Spatial Fourier Analysis
103 4.4.2. Model of Non-Conformal Layer Growth
110 4.4.3. Optical Simulations of Tandem Thin-Film Silicon Solar Cell
118 4.5. The Role of Illumination Spectrum
129 4.6. Conclusion
133 Acknowledgement
134 References
135
5 Modelling of Organic Photovoltaics
141
5.1. Introduction to Organic Photovoltaics
141 5.2. Performance of Organic Photovoltaics
143 5.3. Charge Transport in Organic Semiconductors
145 5.4. Energetic Disorder in Organic Semiconductors
150 5.5. Morphology of Organic Materials
153 5.6. Considerations for Photovoltaics
155 5.6.1. Excitons in Organic Semiconductors
155 5.6.2. Optical Absorption in Organic Photovoltaics
160 5.6.3. Carrier Harvesting in Organic Photovoltaics
161 5.7. Simulation Methods of Organic Photovoltaics
163 5.7.1. Lattice Morphologies and Device Geometry
163 5.7.2. Gaussian Disorder Model
164 5.7.3. Kinetic Monte Carlo Methods
164 5.7.4. Electrostatic Interactions
168 5.7.5. Neighbour Lists
169 5.8. Considerations When Modelling Organic Photovoltaics
169 5.8.1. The Next Steps for OPV Modelling
171 Acknowledgements
172 References
172
6 Modeling the Device Physics of Chalcogenide Thin Film Solar Cells
177 Nima E. Gorji and Lindsay Kuhn 6.1. Introduction
177 6.2. Kosyachenko's Approach: Carrier Transport
178 6.3. Demtsu-Sites Approach: Double-Diode Model
181 6.4. Kosyachenko's Approach: Optical Loss Modeling
184 6.5. Karpov's Approach
186 6.6. Conclusion
187 Acknowledgements
188 References
188
7 Temperature and Irradiance Dependent Efficiency Model for GaInP-GaInAs-Ge Multijunction Solar Cells
191 Monika Freunek Mueller, Bruno Michel and Harold J. Hovel 7.1. Motivation
191 7.2. Efficiency Model
196 7.3. Results And Discussion
209 7.4. Conclusions
211 7.5. Acknowledgments
211 References
212 Appendix: Shockley-Queisser-Modell Calculations
213
8 Variation of Output with Environmental Factors
217 Youichi Hirata, Yuzuru Ueda, Shinichiro Oke and Naotoshi Sekiguchi 8.1. Conversion Efficiency and Standard Test Conditions (STC)
218 8.2. Variation of I-V curve with Each Environmental Factor
218 8.2.1. Irradiance
219 8.2.2. Cell Temperature
221 8.2.3. Spectral Response
222 8.3. Example of Measurement of Spectral Distribution of Solar Radiation
222 8.3.1. Example of Changes with Weather
223 8.3.2. Spectral Variation with Season
225 8.3.3. Effect of Variation in Spectral Solar Radiation
226 8.4. Irradiance
227 8.5. Effects on Performance of PV Modules/Cells
229 8.5.1. System Configurations and Measurements
229 8.5.2. Evaluation Methods
231 8.5.2.1. Performance Ratio
231 8.5.2.2. Effective Array Peak Power of PV Systems
233 8.5.3. Measurement Results
233 8.5.3.1. Performance Ratios
233 8.5.3.2. Degradation Rates
234 8.6. Cell Temperature
236 8.6.1. Output Energy by Temperature Coefficient
236 8.6.2. Output Energy with Different Installation Method
237 8.7. Results for Concentrated Photovoltaics
239 8.7.1. Introduction
239 8.7.2. Field Test of a CPV Module
239 8.7.3. Decline of Efficiency of the Early-Type CPV Module
239 8.7.4. Influences of the Degradation
241 Acknowledgments
243 References
244
9 Modeling of Indoor Photovoltaic Devices Monika Freunek (Muller) 9.1. Introduction
245 9.1.1. Brief History of IPV
246 9.1.2. Characteristics of IPV Modeling
247 9.2. Indoor Radiation
248 9.2.1. Modeling Indoor Spectral Irradiance
250 9.3. Maximum Efficiencies
251 9.3.1. Intensity effects
255 9.4. Demonstrated Efficiencies and Further Optimization
257 9.5. Characterization and Measured Efficiencies
261 9.5.1. Irradiance Measurements
261 9.6. Outlook
262 9.7. Acknowledgement
264 References
264
10 Modelling Hysteresis in Perovskite Solar Cells
267 James M Cave and Alison B Walker 10.1. Introduction to Perovskite Solar Cells
267 Acknowledgements
277 References
277 Index 000.

This book provides the reader with a solid understanding of the fundamental modeling of photovoltaic devices. After the material independent limit of photovoltaic conversion, the readers are introduced to the most well-known theory of "classical" silicon modeling. Based on this, for each of the most important PV materials, their performance under different conditions is modeled. This book also covers different modeling approaches, from very fundamental theoretic investigations to applied numeric simulations based on experimental values. The book concludes wth a chapter on the influence of spectral variations. The information is supported by providing the names of simulation software and basic literature to the field. The information in the book gives the user specific application with a solid background in hand, to judge which materials could be appropriate as well as realistic expectations of the performance the devices could achieve.

Description based on print version record and CIP data provided by publisher; resource not viewed.

There are no comments for this item.

to post a comment.