Photovoltaic modeling handbook / (Record no. 51373)

000 -LEADER
fixed length control field 09851cam a2200433 i 4500
001 - CONTROL NUMBER
control field 20539963
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20231013160608.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m |o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr |n|||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 180613s2018 nju ob 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2018028620
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119364207 (ePub)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119364191 (Adobe PDF)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119364214
040 ## - CATALOGING SOURCE
Original cataloging agency DLC
Language of cataloging eng
Description conventions rda
Transcribing agency DLC
Modifying agency DLC
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng.
042 ## - AUTHENTICATION CODE
Authentication code pcc
050 10 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TK1087
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.31/244
Edition number 23
245 00 - TITLE STATEMENT
Title Photovoltaic modeling handbook /
Statement of responsibility, etc. edited by Monika Freunek Müller.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Hoboken, New Jersey :
Name of producer, publisher, distributor, manufacturer Wiley-Scrivener,
Date of production, publication, distribution, manufacture, or copyright notice [2018]
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource.
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code n
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code nc
Source rdacarrier
490 0# - SERIES STATEMENT
Series statement Advances in hydrogen production and storage
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Includes bibliographical references and index.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note Contents<br/><br/> Preface<br/> 000<br/> 1. Introduction<br/> 1 Monika Freunek (Muller) References<br/> 5<br/> 2. Fundamental Limits of Solar Energy Conversion<br/> 7 Thorsten Trupke and Peter Wurfel 2.1. Introduction 2.2. The Carnot Efficiency - A Realistic Limit for PV Conversion? 2.3. Solar Cell Absorbers - Converting Heat into Chemical 2.4. No Junction Required - The IV Curve of a Uniform Absorber 2.5. Limiting Efficiency Calculations 2.6. Real Solar Cell Structures 2.7. Beyond the Shockley Queisser Limit 2.8. Summary and Conclusions Acknowledgement References<br/> 3. Optical Modeling of Photovoltaic Modules Carsten Schinke, Malte R.Vogt, and Karsten Bothe 3.1. Introduction 3.1.1. Terminology 3.1.2. Simulation object 3.1.3. Photon (Light ray) 3.1.4. Light source 3.1.5. Simulation domain 3.1.6. Simulation scene 3.1.7. Photon marker 3.1.8. Surface effects with Ray Tracing Simulations<br/> 27 3.1.9. Boundary conditions<br/> 32 3.1.10. Photon shifters<br/> 32 3.2. Basics of Optical Ray Tracing Simulations<br/> 32 3.2.1. Ray Optics<br/> 32 3.2.1.1. Basic Assumptions<br/> 33 3.2.1.2. Absorption of Light<br/> 33 3.2.1.3. Refraction of Light at Interfaces<br/> 34 3.2.1.4. Modeling of Thin Films<br/> 35 3.2.2. Ray Tracing<br/> 37 3.2.3. Monte-Carlo Particle Tracing<br/> 38 3.2.4. Statistical Uncertainty of Monte-Carlo Results<br/> 40 3.2.5. Generating Random Numbers with Non-Uniform Distributions<br/> 42 3.3. Modeling Illumination<br/> 46 3.3.1. Basic Light Sources<br/> 46 3.3.2. Modeling Realistic Illumination Conditions<br/> 48 3.3.2.1. Preprocessing of Irradiance Data<br/> 49 3.3.2.2. Implementation for Ray Tracing<br/> 50 3.3.2.3. Application Example<br/> 52 3.4. Specific Issues for Ray Tracing of Photovoltaic Modules<br/> 53 3.4.1. Geometries and Symmetries in PV Devices<br/> 55 3.4.2. Multi-Domain Approach<br/> 57 3.4.2.1. Module domain<br/> 59 3.4.2.2. Front Finger Domain<br/> 60 3.4.2.3. Front Texture Domain<br/> 60 3.4.2.4. Rear Side Domains<br/> 61 3.4.3. Post processing of Simulation Results<br/> 61 3.4.4. Ray Tracing Application Examples<br/> 64 3.4.4.1. Validation of Simulation Results<br/> 64 3.4.4.2. Optical Loss Analysis: From Cell to Module<br/> 66 3.4.4.3. Bifacial Solar Cells and Modules<br/> 68 3.5. From Optics to Power Output<br/> 69 3.5.1. Calculation Chain: From Ray Tracing to Module Power Output<br/> 70 3.5.1.1. Inclusion of the Irradiation Spectrum<br/> 73 3.5.1.2. Calculation of Module Output Power<br/> 74 3.5.1.3. Outlook: Energy Yield Calculation<br/> 75 3.5.2. Application Examples<br/> 76 3.5.2.1. Calculation of Short Circuit Current and Power Output<br/> 76 3.5.2.2. Current Loss Analysis: Standard Testing Conditions vs. Field Conditions<br/> 79 3.6. Overview of Optical Simulation Tools for PV Devices<br/> 80 3.6.1. Analysis of Solar Cells<br/> 80 3.6.2. Analysis of PV Modules and Their Surrounding<br/> 82 3.6.3. Further Tools Which Are not Publicly Available<br/> 82 Acknowledgments<br/> 85 References<br/> 85<br/> 4 Optical Modelling and Simulations of Thin-Film Silicon Solar Cells<br/> 93 Janez Krc, Martin Sever, Benjamin Lipovsek, Andrej Campa and Marko Topic 4.1. Introduction<br/> 94 4.2. Approaches of Optical Modelling<br/> 95 4.2.1. One-Dimensional Optical Modelling<br/> 96 4.2.2. Two- and Three-Dimensional Rigorous Optical Modelling<br/> 97 4.2.3. Challenges in Optical Modelling<br/> 97 4.3. Selected Methods and Approaches<br/> 98 4.3.1. Finite Element Method<br/> 98 4.3.2. Coupled Modelling Approach<br/> 100 4.4. Examples of Optical Modelling and Simulations<br/> 102 4.4.1. Texture Optimization Applying Spatial Fourier Analysis<br/> 103 4.4.2. Model of Non-Conformal Layer Growth<br/> 110 4.4.3. Optical Simulations of Tandem Thin-Film Silicon Solar Cell<br/> 118 4.5. The Role of Illumination Spectrum<br/> 129 4.6. Conclusion<br/> 133 Acknowledgement<br/> 134 References<br/> 135<br/> 5 Modelling of Organic Photovoltaics<br/> 141<br/> 5.1. Introduction to Organic Photovoltaics<br/> 141 5.2. Performance of Organic Photovoltaics<br/> 143 5.3. Charge Transport in Organic Semiconductors<br/> 145 5.4. Energetic Disorder in Organic Semiconductors<br/> 150 5.5. Morphology of Organic Materials<br/> 153 5.6. Considerations for Photovoltaics<br/> 155 5.6.1. Excitons in Organic Semiconductors<br/> 155 5.6.2. Optical Absorption in Organic Photovoltaics<br/> 160 5.6.3. Carrier Harvesting in Organic Photovoltaics<br/> 161 5.7. Simulation Methods of Organic Photovoltaics<br/> 163 5.7.1. Lattice Morphologies and Device Geometry<br/> 163 5.7.2. Gaussian Disorder Model<br/> 164 5.7.3. Kinetic Monte Carlo Methods<br/> 164 5.7.4. Electrostatic Interactions<br/> 168 5.7.5. Neighbour Lists<br/> 169 5.8. Considerations When Modelling Organic Photovoltaics<br/> 169 5.8.1. The Next Steps for OPV Modelling<br/> 171 Acknowledgements<br/> 172 References<br/> 172<br/> 6 Modeling the Device Physics of Chalcogenide Thin Film Solar Cells<br/> 177 Nima E. Gorji and Lindsay Kuhn 6.1. Introduction<br/> 177 6.2. Kosyachenko's Approach: Carrier Transport<br/> 178 6.3. Demtsu-Sites Approach: Double-Diode Model<br/> 181 6.4. Kosyachenko's Approach: Optical Loss Modeling<br/> 184 6.5. Karpov's Approach<br/> 186 6.6. Conclusion<br/> 187 Acknowledgements<br/> 188 References<br/> 188<br/> 7 Temperature and Irradiance Dependent Efficiency Model for GaInP-GaInAs-Ge Multijunction Solar Cells<br/> 191 Monika Freunek Mueller, Bruno Michel and Harold J. Hovel 7.1. Motivation<br/> 191 7.2. Efficiency Model<br/> 196 7.3. Results And Discussion<br/> 209 7.4. Conclusions<br/> 211 7.5. Acknowledgments<br/> 211 References<br/> 212 Appendix: Shockley-Queisser-Modell Calculations<br/> 213<br/> 8 Variation of Output with Environmental Factors<br/> 217 Youichi Hirata, Yuzuru Ueda, Shinichiro Oke and Naotoshi Sekiguchi 8.1. Conversion Efficiency and Standard Test Conditions (STC)<br/> 218 8.2. Variation of I-V curve with Each Environmental Factor<br/> 218 8.2.1. Irradiance<br/> 219 8.2.2. Cell Temperature<br/> 221 8.2.3. Spectral Response<br/> 222 8.3. Example of Measurement of Spectral Distribution of Solar Radiation<br/> 222 8.3.1. Example of Changes with Weather<br/> 223 8.3.2. Spectral Variation with Season<br/> 225 8.3.3. Effect of Variation in Spectral Solar Radiation<br/> 226 8.4. Irradiance<br/> 227 8.5. Effects on Performance of PV Modules/Cells<br/> 229 8.5.1. System Configurations and Measurements<br/> 229 8.5.2. Evaluation Methods<br/> 231 8.5.2.1. Performance Ratio<br/> 231 8.5.2.2. Effective Array Peak Power of PV Systems<br/> 233 8.5.3. Measurement Results<br/> 233 8.5.3.1. Performance Ratios<br/> 233 8.5.3.2. Degradation Rates<br/> 234 8.6. Cell Temperature<br/> 236 8.6.1. Output Energy by Temperature Coefficient<br/> 236 8.6.2. Output Energy with Different Installation Method<br/> 237 8.7. Results for Concentrated Photovoltaics<br/> 239 8.7.1. Introduction<br/> 239 8.7.2. Field Test of a CPV Module<br/> 239 8.7.3. Decline of Efficiency of the Early-Type CPV Module<br/> 239 8.7.4. Influences of the Degradation<br/> 241 Acknowledgments<br/> 243 References<br/> 244<br/> 9 Modeling of Indoor Photovoltaic Devices Monika Freunek (Muller) 9.1. Introduction<br/> 245 9.1.1. Brief History of IPV<br/> 246 9.1.2. Characteristics of IPV Modeling<br/> 247 9.2. Indoor Radiation<br/> 248 9.2.1. Modeling Indoor Spectral Irradiance<br/> 250 9.3. Maximum Efficiencies<br/> 251 9.3.1. Intensity effects<br/> 255 9.4. Demonstrated Efficiencies and Further Optimization<br/> 257 9.5. Characterization and Measured Efficiencies<br/> 261 9.5.1. Irradiance Measurements<br/> 261 9.6. Outlook<br/> 262 9.7. Acknowledgement<br/> 264 References<br/> 264<br/> 10 Modelling Hysteresis in Perovskite Solar Cells<br/> 267 James M Cave and Alison B Walker 10.1. Introduction to Perovskite Solar Cells<br/> 267 Acknowledgements<br/> 277 References<br/> 277 Index 000.
520 ## - SUMMARY, ETC.
Summary, etc. This book provides the reader with a solid understanding of the fundamental modeling of photovoltaic devices. After the material independent limit of photovoltaic conversion, the readers are introduced to the most well-known theory of "classical" silicon modeling. Based on this, for each of the most important PV materials, their performance under different conditions is modeled. This book also covers different modeling approaches, from very fundamental theoretic investigations to applied numeric simulations based on experimental values. The book concludes wth a chapter on the influence of spectral variations. The information is supported by providing the names of simulation software and basic literature to the field. The information in the book gives the user specific application with a solid background in hand, to judge which materials could be appropriate as well as realistic expectations of the performance the devices could achieve.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on print version record and CIP data provided by publisher; resource not viewed.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Photovoltaic power generation
General subdivision Mathematical models.
655 ## - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Müller, Monika Freunek,
Relator term editor.
856 ## - ELECTRONIC LOCATION AND ACCESS
Link text Full text is available at Wiley Online Library Click here to view
Uniform Resource Identifier <a href="https://onlinelibrary.wiley.com/doi/book/10.1002/9781119364214">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119364214</a>
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 7
b cbc
c origcop
d 1
e ecip
f 20
g y-gencatlg
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Inventory number Full call number Barcode Date last seen Price effective from Koha item type
          COLLEGE LIBRARY COLLEGE LIBRARY LIC Gateway 2020-10-22 50274 621.31244 P5669 2018 50274 2020-10-22 2020-10-22 EBOOK