Neural network computer vision with OpenCV 5 : build computer vision solutions using Python and DNN module / Gopi Krishna Nuti

By: Nuti, Gopi Krishna [author]
Language: English Publisher: New Delhi : BPB Publications, [2024]Publisher: ©2024Edition: First editionDescription: xviii, 247 pages : illustrations; 24 cmContent type: text Media type: unmediated Carrier type: volumeISBN: 9789355516961Subject(s): Neural networks (Computer science) | OpenCV (Computer program language) | Computer vision | Python (Computer program language)DDC classification: 006.3 Summary: Neural Network Computer Vision with OpenCV equips you with professional skills and knowledge to build intelligent vision systems using OpenCV. It creates a sequential pathway for understanding morphological operations, edge and corner detection, object localization, image classification, segmentation, and advanced applications like face detection and recognition, and optical character recognition.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Home library Call number Status Date due Barcode Item holds
BOOK BOOK COLLEGE LIBRARY
COLLEGE LIBRARY
SUBJECT REFERENCE
006.3 N957 2024 (Browse shelf) Available CITU-CL-54269
Total holds: 0

Includes index.

Intro -- Cover Page -- Title Page -- Copyright Page -- Dedication -- About the Author -- About the Reviewer -- Acknowledgement -- Preface -- Table of Contents -- 1. Introduction to Computer Vision -- Introduction -- Structure -- Objectives -- History of computer imaging -- Retrieving information from images -- Image processing -- Representation -- Manipulation -- Flexibility -- Reproducibility -- Digital image processing -- Conclusion -- Exercises -- 2. Basics of Imaging -- Introduction -- Structure -- Objectives -- Pixels and image representation -- Pixels -- Color spaces -- Primary colors

Additive colors -- Subtractive colors -- Grayscale -- Other color spaces -- Pixels and color spaces -- Examples -- Image filetypes -- Video files -- Images and videos -- Programming for image data -- A brief history of computer image programming -- OpenCV: History and overview -- Image processing code samples -- Opening, viewing and closing image files -- CPP code -- Python code -- Videos and frames -- Programming with color spaces -- Grayscale -- RGB image -- Conclusion -- Exercises -- 3. Challenges in Computer Vision -- Introduction -- Structure -- Objectives -- Topics in computer vision

Complexity in image processing -- Image classification -- Object localization -- Image segmentation -- Character recognition -- Conclusion -- Exercises -- Key terms -- 4. Classical Solutions -- Introduction -- Structure -- Objectives -- Solutions for challenges in computer vision -- Classical solutions -- Modern solutions -- Algorithm families -- Morphological operations -- Erosion and dilation of images -- Closing and opening images -- Thresholding -- Detecting edges and corners -- Image transformations -- Region growing -- Clustering -- Template matching -- Watershed algorithm

Foreground and background detection -- Superpixels -- Image pyramids -- Convolution -- Conclusion -- Exercises -- Key terms -- 5. Deep Learning and CNNs -- Introduction -- Structure -- Objectives -- History of deep learning -- Perceptron -- Shallow learning networks -- Deep learning networks -- Weights, biases, and activation functions -- Weight -- Bias -- Activation function -- Optimization function -- Convolutional neural networks -- CNNs versus fully connected networks -- Deep learning process -- Training -- Techniques in training -- Inference process -- Techniques/tricks in inference

Conclusion -- Key terms -- Exercises -- 6. OpenCV DNN Module -- Introduction -- Structure -- Objectives -- Deep learning frameworks -- TensorFlow -- PyTorch -- Keras -- Inference for computer vision -- Local inferencing -- Local CPUs -- Local GPUs -- Cloud -- Edge computing -- OpenCV DNN module -- History -- Features and limitations -- Capabilities -- Limitations -- Considerations -- Supported layers -- Unsupported layers and operations -- Important classes -- Conclusion -- Exercises -- 7. Modern Solutions for Image Classification -- Introduction -- Structure -- Objectives

Neural Network Computer Vision with OpenCV equips you with professional skills and knowledge to build intelligent vision systems using OpenCV. It creates a sequential pathway for understanding morphological operations, edge and corner detection, object localization, image classification, segmentation, and advanced applications like face detection and recognition, and optical character recognition.

There are no comments for this item.

to post a comment.