Neural network computer vision with OpenCV 5 : build computer vision solutions using Python and DNN module / Gopi Krishna Nuti
By: Nuti, Gopi Krishna [author]
Language: English Publisher: New Delhi : BPB Publications, [2024]Publisher: ©2024Edition: First editionDescription: xviii, 247 pages : illustrations; 24 cmContent type: text Media type: unmediated Carrier type: volumeISBN: 9789355516961Subject(s): Neural networks (Computer science) | OpenCV (Computer program language) | Computer vision | Python (Computer program language)DDC classification: 006.3 Summary: Neural Network Computer Vision with OpenCV equips you with professional skills and knowledge to build intelligent vision systems using OpenCV. It creates a sequential pathway for understanding morphological operations, edge and corner detection, object localization, image classification, segmentation, and advanced applications like face detection and recognition, and optical character recognition.Item type | Current location | Home library | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
![]() |
COLLEGE LIBRARY | COLLEGE LIBRARY SUBJECT REFERENCE | 006.3 N957 2024 (Browse shelf) | Available | CITU-CL-54269 |
Browsing COLLEGE LIBRARY Shelves , Shelving location: SUBJECT REFERENCE Close shelf browser
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
006.3 M622 2009 Artificial intelligence for games / | 006.3 N312 2002 Artificial intelligence : a guide to intelligent systems / | 006.3 N599 2010 The quest for artificial intelligence : a history of ideas and achievements / | 006.3 N957 2024 Neural network computer vision with OpenCV 5 : build computer vision solutions using Python and DNN module / | 006.3 R19 1988 A guide to commercial artificial intelligence : fundamentals and real-world applications / | 006.3 R637 2003 Data mining : a tutorial-based primer / | 006.3 R912 1995 Neural networks : an introduction / |
Includes index.
Intro -- Cover Page -- Title Page -- Copyright Page -- Dedication -- About the Author -- About the Reviewer -- Acknowledgement -- Preface -- Table of Contents -- 1. Introduction to Computer Vision -- Introduction -- Structure -- Objectives -- History of computer imaging -- Retrieving information from images -- Image processing -- Representation -- Manipulation -- Flexibility -- Reproducibility -- Digital image processing -- Conclusion -- Exercises -- 2. Basics of Imaging -- Introduction -- Structure -- Objectives -- Pixels and image representation -- Pixels -- Color spaces -- Primary colors
Additive colors -- Subtractive colors -- Grayscale -- Other color spaces -- Pixels and color spaces -- Examples -- Image filetypes -- Video files -- Images and videos -- Programming for image data -- A brief history of computer image programming -- OpenCV: History and overview -- Image processing code samples -- Opening, viewing and closing image files -- CPP code -- Python code -- Videos and frames -- Programming with color spaces -- Grayscale -- RGB image -- Conclusion -- Exercises -- 3. Challenges in Computer Vision -- Introduction -- Structure -- Objectives -- Topics in computer vision
Complexity in image processing -- Image classification -- Object localization -- Image segmentation -- Character recognition -- Conclusion -- Exercises -- Key terms -- 4. Classical Solutions -- Introduction -- Structure -- Objectives -- Solutions for challenges in computer vision -- Classical solutions -- Modern solutions -- Algorithm families -- Morphological operations -- Erosion and dilation of images -- Closing and opening images -- Thresholding -- Detecting edges and corners -- Image transformations -- Region growing -- Clustering -- Template matching -- Watershed algorithm
Foreground and background detection -- Superpixels -- Image pyramids -- Convolution -- Conclusion -- Exercises -- Key terms -- 5. Deep Learning and CNNs -- Introduction -- Structure -- Objectives -- History of deep learning -- Perceptron -- Shallow learning networks -- Deep learning networks -- Weights, biases, and activation functions -- Weight -- Bias -- Activation function -- Optimization function -- Convolutional neural networks -- CNNs versus fully connected networks -- Deep learning process -- Training -- Techniques in training -- Inference process -- Techniques/tricks in inference
Conclusion -- Key terms -- Exercises -- 6. OpenCV DNN Module -- Introduction -- Structure -- Objectives -- Deep learning frameworks -- TensorFlow -- PyTorch -- Keras -- Inference for computer vision -- Local inferencing -- Local CPUs -- Local GPUs -- Cloud -- Edge computing -- OpenCV DNN module -- History -- Features and limitations -- Capabilities -- Limitations -- Considerations -- Supported layers -- Unsupported layers and operations -- Important classes -- Conclusion -- Exercises -- 7. Modern Solutions for Image Classification -- Introduction -- Structure -- Objectives
Neural Network Computer Vision with OpenCV equips you with professional skills and knowledge to build intelligent vision systems using OpenCV. It creates a sequential pathway for understanding morphological operations, edge and corner detection, object localization, image classification, segmentation, and advanced applications like face detection and recognition, and optical character recognition.
There are no comments for this item.