000 -LEADER |
fixed length control field |
04352nam a22003137a 4500 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
CITU |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20250807150826.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
250712b ||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9789355516961 |
041 ## - LANGUAGE CODE |
Language code of text/sound track or separate title |
eng |
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
006.3 |
Edition number |
23 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Preferred name for the person |
Nuti, Gopi Krishna |
Relator term |
author |
245 10 - TITLE STATEMENT |
Title |
Neural network computer vision with OpenCV 5 : |
Remainder of title |
build computer vision solutions using Python and DNN module / |
Statement of responsibility, etc |
Gopi Krishna Nuti |
250 ## - EDITION STATEMENT |
Edition statement |
First edition |
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Place of publication, distribution, etc |
New Delhi : |
Name of publisher, distributor, etc |
BPB Publications, |
Date of publication, distribution, etc |
[2024] |
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Date of publication, distribution, etc |
©2024 |
300 ## - PHYSICAL DESCRIPTION |
Extent |
xviii, 247 pages : |
Other physical details |
illustrations; |
Dimensions |
24 cm |
336 ## - CONTENT TYPE |
Source |
rdacontent |
Content type term |
text |
Content type code |
txt |
337 ## - MEDIA TYPE |
Source |
rdamedia |
Media type term |
unmediated |
Media type code |
n |
338 ## - CARRIER TYPE |
Source |
rdacarrier |
Carrier type term |
volume |
Carrier type code |
nc |
500 ## - GENERAL NOTE |
General note |
Includes index. |
506 ## - RESTRICTIONS ON ACCESS NOTE |
Source of term |
Intro -- Cover Page -- Title Page -- Copyright Page -- Dedication -- About the Author -- About the Reviewer -- Acknowledgement -- Preface -- Table of Contents -- 1. Introduction to Computer Vision -- Introduction -- Structure -- Objectives -- History of computer imaging -- Retrieving information from images -- Image processing -- Representation -- Manipulation -- Flexibility -- Reproducibility -- Digital image processing -- Conclusion -- Exercises -- 2. Basics of Imaging -- Introduction -- Structure -- Objectives -- Pixels and image representation -- Pixels -- Color spaces -- Primary colors<br/><br/>Additive colors -- Subtractive colors -- Grayscale -- Other color spaces -- Pixels and color spaces -- Examples -- Image filetypes -- Video files -- Images and videos -- Programming for image data -- A brief history of computer image programming -- OpenCV: History and overview -- Image processing code samples -- Opening, viewing and closing image files -- CPP code -- Python code -- Videos and frames -- Programming with color spaces -- Grayscale -- RGB image -- Conclusion -- Exercises -- 3. Challenges in Computer Vision -- Introduction -- Structure -- Objectives -- Topics in computer vision<br/><br/>Complexity in image processing -- Image classification -- Object localization -- Image segmentation -- Character recognition -- Conclusion -- Exercises -- Key terms -- 4. Classical Solutions -- Introduction -- Structure -- Objectives -- Solutions for challenges in computer vision -- Classical solutions -- Modern solutions -- Algorithm families -- Morphological operations -- Erosion and dilation of images -- Closing and opening images -- Thresholding -- Detecting edges and corners -- Image transformations -- Region growing -- Clustering -- Template matching -- Watershed algorithm<br/><br/>Foreground and background detection -- Superpixels -- Image pyramids -- Convolution -- Conclusion -- Exercises -- Key terms -- 5. Deep Learning and CNNs -- Introduction -- Structure -- Objectives -- History of deep learning -- Perceptron -- Shallow learning networks -- Deep learning networks -- Weights, biases, and activation functions -- Weight -- Bias -- Activation function -- Optimization function -- Convolutional neural networks -- CNNs versus fully connected networks -- Deep learning process -- Training -- Techniques in training -- Inference process -- Techniques/tricks in inference<br/><br/>Conclusion -- Key terms -- Exercises -- 6. OpenCV DNN Module -- Introduction -- Structure -- Objectives -- Deep learning frameworks -- TensorFlow -- PyTorch -- Keras -- Inference for computer vision -- Local inferencing -- Local CPUs -- Local GPUs -- Cloud -- Edge computing -- OpenCV DNN module -- History -- Features and limitations -- Capabilities -- Limitations -- Considerations -- Supported layers -- Unsupported layers and operations -- Important classes -- Conclusion -- Exercises -- 7. Modern Solutions for Image Classification -- Introduction -- Structure -- Objectives |
520 ## - SUMMARY, ETC. |
Summary, etc |
Neural Network Computer Vision with OpenCV equips you with professional skills and knowledge to build intelligent vision systems using OpenCV. It creates a sequential pathway for understanding morphological operations, edge and corner detection, object localization, image classification, segmentation, and advanced applications like face detection and recognition, and optical character recognition. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Neural networks (Computer science) |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
OpenCV (Computer program language) |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Computer vision. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Python (Computer program language) |
942 ## - ADDED ENTRY ELEMENTS |
Source of classification or shelving scheme |
|
Item type |
BOOK |