Wind Power in Power Systems / (Record no. 81969)

000 -LEADER
fixed length control field 22399nam a22003137a 4500
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220421171232.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 220421b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119941842
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780470974162
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119942085
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119941842
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.312136
Edition number 23
245 ## - TITLE STATEMENT
Title Wind Power in Power Systems /
Statement of responsibility, etc Thomas Ackermann
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken :
Name of publisher, distributor, etc John Wiley & Sons,
Date of publication, distribution, etc c2012.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
500 ## - GENERAL NOTE
General note ABOUT THE AUTHOR<br/><br/>Dr Thomas Ackermann, Energynautics GmbH, Langen, Germany<br/>Thomas Ackermann is CEO of wind and renewable energies consulting company, Energynautics, which specialises in network integration and power markets. He gained his PhDat KTH (Royal University of Technology), Stockholm, Sweden, where he continues to do wind power freelance lecturing at the Department of Electrical Engineering. He is also involved in education at the University of Zagreb, Croatia, via the EU TEMPUS program. Dr Ackermann's main interests are wind power, distributed power generation, and the impact of market regulations on the development of distributed generation in deregulated markets. Thomas Ackermann is an Editor of Wind Energy Journal (Wiley).
505 0# - CONTENTS
Formatted contents note TABLE OF CONTENTS<br/><br/>Contributors xxxi<br/><br/>Abbreviations xlvii<br/><br/>Notation lvii<br/><br/>1 Introduction 1<br/>Thomas Ackermann<br/><br/>2 Preface: Wind Power Myths Debunked 7<br/>Michael Milligan, Kevin Porter, Edgar DeMeo, Paul Denholm, Hannele Holttinen, Brendan Kirby, Nicholas Miller, Andrew Mills, Mark O’Malley, Matthew Schuerger and Lennart Söder<br/><br/>2.1 Can Grid Operators Deal with the Variability of Wind Power? 7<br/><br/>2.2 Does Wind Power Require Back-up Generation? 8<br/><br/>2.3 Aren’t More CO2 Emissions Generated with Wind Power in Power Systems than Without, Due to Back-up Requirements? 9<br/><br/>2.4 Does Wind Power Require Storage? 9<br/><br/>2.5 Isn’t the Existing Flexibility Already Fully Utilized? 12<br/><br/>2.6 How Often Does the Wind Stop Blowing Everywhere at the Same Time? 13<br/><br/>2.7 To What Extent can Wind Power Production be Predicted? 14<br/><br/>2.8 Is it Expensive to Integrate Wind? 15<br/><br/>2.9 Doesn’t Wind Power Production Require New Transmission, and won’t that Make Wind Expensive? 16<br/><br/>2.10 Does Wind Power have Capacity Credit? 16<br/><br/>2.11 Don’t Wind Power Plants have Low Capacity Factors? 17<br/><br/>2.12 Is Wind Power Generation Cost-competitive with Coal or Nuclear? 17<br/><br/>2.13 Is there a Limit to How Much Wind Generation Capacity can be Accommodated by the Grid? 18<br/><br/>2.14 Summary 19<br/><br/>Acknowledgment 20<br/><br/>References 20<br/><br/>Part A Theoretical Background<br/><br/>3 Historical Development and Current Status of Wind Power 23<br/>Thomas Ackermann<br/><br/>3.1 Introduction 23<br/><br/>3.2 Historical Background 24<br/><br/>3.3 Current Status of Wind Power Worldwide 27<br/><br/>3.4 Status of Wind Turbine Technology 41<br/><br/>3.5 Conclusions 44<br/><br/>Acknowledgments 44<br/><br/>References 44<br/><br/>4 Wind Power in Power Systems: An Introduction 47<br/>Lennart Söder and Thomas Ackermann<br/><br/>4.1 Introduction 47<br/><br/>4.2 Power System History 47<br/><br/>4.3 Current Status of Wind Power in Power Systems 48<br/><br/>4.4 Network Integration Issues for Wind Power 49<br/><br/>4.5 Basic Electrical Engineering 50<br/><br/>4.6 Characteristics of Wind Power Generation 53<br/><br/>4.7 Basic Integration Issues Related to Wind Power 61<br/><br/>4.8 Conclusions 68<br/><br/>Appendix Mechanical Equivalent to Power System Operation with Wind Power 68<br/><br/>A.1 Introduction 69<br/><br/>A.2 Active Power Balance 69<br/><br/>A.3 Synchronous Machines 69<br/><br/>A.4 Asynchronous Machines 69<br/><br/>A.5 Power Electronic Interfaces 70<br/><br/>A.6 Frequency Control 70<br/><br/>A.7 Wind Power 70<br/><br/>A.8 Reactive Power Balance 70<br/><br/>A.9 Asynchronous Machines 71<br/><br/>A.10 Capacitors 71<br/><br/>A.11 Synchronous Machines 71<br/><br/>A.12 Power Electronic Interfaces 71<br/><br/>References 72<br/><br/>5 Generators and Power Electronics for Wind Turbines 73<br/>Anca D. Hansen<br/><br/>5.1 Introduction 73<br/><br/>5.2 State-of-the-Art Technologies 73<br/><br/>5.3 Generator Concepts 90<br/><br/>5.4 Power Electronic Concepts 96<br/><br/>5.5 Power Electronic Solutions in Wind Farms 100<br/><br/>5.6 Conclusions 102<br/><br/>References 102<br/><br/>6 Power System Impacts of Wind Power 105<br/>Hannele Holttinen and Ritva Hirvonen<br/><br/>6.1 Introduction 105<br/><br/>6.2 Operation of the Power System 106<br/><br/>6.3 Wind Power Production and the Power System 110<br/><br/>6.4 Effects of Wind Energy on the Power System 118<br/><br/>6.5 Conclusions 128<br/><br/>References 129<br/><br/>7 The Value of Wind Power 131<br/>Lennart Söder<br/><br/>7.1 Introduction 131<br/><br/>7.2 The Value of a Power Plant 131<br/><br/>7.3 The Value of Wind Power 132<br/><br/>7.4 The Market Value of Wind Power 141<br/><br/>7.5 Conclusions 154<br/><br/>References 155<br/><br/>Part B Technical Regulations and Grid Code Validation<br/><br/>8 Power Quality Standards for Wind Turbines 159<br/>John Olav Tande<br/><br/>8.1 Introduction 159<br/><br/>8.2 Power Quality Characteristics of Wind Turbines 160<br/><br/>8.3 Impact on Voltage Quality 164<br/><br/>8.4 Discussion 171<br/><br/>8.5 Conclusion 172<br/><br/>References 172<br/><br/>9 Measurement of Electrical Characteristics 175<br/>Fritz Santjer<br/><br/>9.1 Introduction 175<br/><br/>9.2 Power Quality Measurement Procedures 176<br/><br/>9.3 Specification 178<br/><br/>9.4 Conclusions 192<br/><br/>References 193<br/><br/>10 Practical Experience with Power Quality and Wind Power 195<br/>Åke Larsson<br/><br/>10.1 Introduction 195<br/><br/>10.2 Voltage Variations 195<br/><br/>10.3 Flicker 197<br/><br/>10.4 Harmonics 203<br/><br/>10.5 Transients 204<br/><br/>10.6 Frequency 206<br/><br/>10.7 Conclusions 207<br/><br/>References 208<br/><br/>11 Technical Regulations for the Interconnection of Wind Power Plants to the Power System 209<br/>Julija Matevosyan, Sigrid M. Bolik and Thomas Ackermann<br/><br/>11.1 Introduction 209<br/><br/>11.2 Overview of Technical Regulations 209<br/><br/>11.3 Comparison of Technical Interconnection Regulations 218<br/><br/>11.4 New Interconnection Requirements at Wind Plant Level 233<br/><br/>11.5 Interconnection Practice 237<br/><br/>11.6 Conclusions 238<br/><br/>References 238<br/><br/>12 Performance Validation and Certification for Grid Codes 241<br/>Martin Schellschmidt, Stephan Adloff and Markus Fischer<br/><br/>12.1 Introduction 241<br/><br/>12.2 History of the Certification Process 242<br/><br/>12.3 Steps of the Unit Certification Process 244<br/><br/>12.4 Steps in the Plant Certification Process 250<br/><br/>12.5 Experience with the Certification Process in Germany 252<br/><br/>12.6 Performance Validation in Canada and Spain 254<br/><br/>12.7 Conclusions 258<br/><br/>References 258<br/><br/>Part C Wind Power Plant and Transmission Issues<br/><br/>13 Electrical Design of a Wind Power Plant 263<br/>Nicholas Miller, Reigh Walling and Richard Piwko<br/><br/>13.1 Introduction 263<br/><br/>13.2 Wind Plant Collection System Design Objectives 263<br/><br/>13.3 Wind Plant Performance Requirements 265<br/><br/>13.4 Economic Evaluation Factors 266<br/><br/>13.5 Collection System Electrical Design 270<br/><br/>13.6 Plant Control and Communication 281<br/><br/>References 292<br/><br/>14 Transmission Systems for Offshore Wind Power Plants and Operation Planning Strategies for Offshore Power Systems 293<br/>Thomas Ackermann, Antje Orths and Krzysztof Rudion<br/><br/>14.1 Introduction 293<br/><br/>14.2 General Electrical Aspects 297<br/><br/>14.3 Transmission System to Shore 301<br/><br/>14.4 From a Cluster Approach to Offshore Transmission Grid: The Kriegers Flak Project 312<br/><br/>14.5 Offshore Grid Systems 312<br/><br/>14.6 New System Solutions for Offshore Wind Power Plants 320<br/><br/>14.7 Alternative Transmission Solutions 322<br/><br/>14.8 Conclusions 322<br/><br/>References 323<br/><br/>15 New Cable Systems for Offshore Wind Power Plants 329<br/>Heinrich Brakelmann and Jan Brüggmann<br/><br/>15.1 Introduction 329<br/><br/>15.2 Technical Background 329<br/><br/>15.3 Power Transmission with Bipolar HVAC Cable Systems 331<br/><br/>15.4 Voltage Definitions and Transformer Groups 332<br/><br/>15.5 Submarine Cable Connections 334<br/><br/>15.6 Examples 337<br/><br/>15.7 HVAC Bipolar Land Cable Systems 340<br/><br/>15.8 Summary 343<br/><br/>References 343<br/><br/>16 New Control Concept for Offshore Wind Power Plants: Constant-Speed Turbines on a Grid with Variable Frequency 345<br/>Eckehard Tröster<br/><br/>16.1 Introduction 345<br/><br/>16.2 Model 346<br/><br/>16.3 Power Limitation 347<br/><br/>16.4 The Park-Variable Concept 347<br/><br/>16.5 Calculating the Energy Yield 353<br/><br/>16.6 Results 354<br/><br/>16.7 Conclusion 358<br/><br/>References 359<br/><br/>Part D International Studies<br/><br/>17 Overview of Integration Studies – Methodologies and Results 363<br/>Hannele Holttinen<br/><br/>17.1 Introduction 363<br/><br/>17.2 Wind Integration Study Set-up and Penetration Level of Wind Power 364<br/><br/>17.3 Methodologies for Wind Integration Studies 366<br/><br/>17.4 Results from Integration Studies 373<br/><br/>17.5 Recommendations 382<br/><br/>17.6 Conclusions and Future Work 383<br/><br/>References 384<br/><br/>18 Two Reference Studies on European Transmission for Wind Integration: TradeWind and EWIS 387<br/>Frans Van Hulle<br/><br/>18.1 Introduction 387<br/><br/>18.2 TradeWind 390<br/><br/>18.3 The European Wind Integration Study EWIS 399<br/><br/>18.4 Future Transmission Needs in Europe from the Studies 408<br/><br/>18.5 Concluding Remarks 410<br/><br/>Acknowledgments 411<br/><br/>References 411<br/><br/>19 Transmission Planning for Wind Energy in the USA: Status and Prospects 413<br/>J. Charles Smith, Dale Osborn, Richard Piwko, Robert Zavadil, Brian Parsons, Lynn Coles, David Hawkins, Warren Lasher and Bradley Nickell<br/><br/>19.1 Introduction 413<br/><br/>19.2 Transmission Planning for Energy Resources 414<br/><br/>19.3 Regional Planning Efforts: Status and Prospects 417<br/><br/>19.4 National Transmission Policy 431<br/><br/>19.5 Summary and Conclusions 435<br/><br/>Acknowledgments 436<br/><br/>References 436<br/><br/>20 Wind Power in Areas with Limited Transmission Capacity 439<br/>Julija Matevosyan<br/><br/>20.1 Introduction 439<br/><br/>20.2 Transmission Limits 440<br/><br/>20.3 Transmission Capacity: Methods of Determination 445<br/><br/>20.4 Measures to Increase Transmission Capacity 447<br/><br/>20.5 Impact of Wind Generation on Available Transmission Capacity 450<br/><br/>20.6 Alternatives to Grid Reinforcement for the Integration of Wind Power 452<br/><br/>20.7 Conclusions 462<br/><br/>References 462<br/><br/>21 Wind Power and Storage 465<br/>Aidan Tuohy and Mark O’Malley<br/><br/>21.1 Introduction 465<br/><br/>21.2 Storage Technologies 465<br/><br/>21.3 Storage for Wind Integration 468<br/><br/>21.4 Studies on Operation of Storage in Systems with High Wind Penetration 473<br/><br/>21.5 Discussion 483<br/><br/>21.6 Conclusions 485<br/><br/>References 485<br/><br/>22 Economic Aspects of Wind Power in Power Systems 489<br/>Poul Erik Morthorst and Thomas Ackermann<br/><br/>22.1 Introduction 489<br/><br/>22.2 Costs for Network Connection and Network Upgrading 489<br/><br/>22.3 System Operation Costs in a Deregulated Market 496<br/><br/>22.4 Example of Nord Pool 500<br/><br/>22.5 Conclusions 515<br/><br/>References 516<br/><br/>Part E Power System Integration Experience<br/><br/>23 Wind Power in the Danish Power System 519<br/>Antje G. Orths and Peter Børre Eriksen<br/><br/>23.1 Introduction 519<br/><br/>23.2 System Overview 521<br/><br/>23.3 Balancing Wind Power in Daily Operation 525<br/><br/>23.5 Conclusions and Lessons Learned 546<br/><br/>References 547<br/><br/>24 Wind Power in the German Network: Present Status and Future Challenges of Maintaining Quality of Supply 549<br/>Matthias Luther and Wilhelm Winter<br/><br/>24.1 Overview 549<br/><br/>24.2 Wind Power Integration in Germany 550<br/><br/>24.3 Wind Power Flow Patterns and Reliable System Operation 553<br/><br/>24.4 Network Planning and Network Security Issues 555<br/><br/>24.6 Requirements to Ensure System Security 562<br/><br/>24.7 Summary: Wind Power in the German Network 566<br/><br/>Acknowledgments 567<br/><br/>References 567<br/><br/>25 Wind Integration in Portugal 569<br/>Ana Estanqueiro<br/><br/>25.1 Introduction 569<br/><br/>25.2 The Portuguese Power System 570<br/><br/>25.3 Planning the Power System for High Wind Penetration 573<br/><br/>25.4 Power System Studies for a Secure Integration of Wind Generation 581<br/><br/>25.5 Operational Experience of Extreme Penetration of Wind Power in Portugal 585<br/><br/>25.6 Synthesis 593<br/><br/>References 593<br/><br/>26 Wind Power Integration Experience in Spain 595<br/>Juan Ma. Rodríguez García, Olivia Alonso García and Miguel de la Torre Rodríguez<br/><br/>26.1 Introduction 595<br/><br/>26.2 Wind Capacity in Spain 597<br/><br/>26.3 Network Arrangements for Wind Power Development 599<br/><br/>26.4 Technical Requirements for Massive Wind Power Integration 602<br/><br/>26.5 Market Arrangements for Wind Power Integration 606<br/><br/>26.6 Operational Arrangements for Wind Power Integration 608<br/><br/>26.7 Future Challenges Associated with Wind Power Integration 617<br/><br/>26.8 Conclusions and Lessons Learned 620<br/><br/>References 621<br/><br/>27 Maximizing Renewable Generation on the Power System of Ireland and Northern Ireland 623<br/>Jonathan O’Sullivan<br/><br/>27.1 Introduction 623<br/><br/>27.2 The Ireland and Northern Ireland Power System 624<br/><br/>27.3 Deregulation and the First European Energy Package 625<br/><br/>27.4 The Development of Renewable Policy 2020 Targets and Beyond 629<br/><br/>27.5 Operational Studies 632<br/><br/>27.6 Impact on the Operation of the Power System 636<br/><br/>27.7 Programme for a Secure, Sustainable Power System 638<br/><br/>27.8 Conclusion 646<br/><br/>References 646<br/><br/>28 Wind Power in the Power System in Texas 649<br/>Henry Durrwachter and Warren Lasher<br/><br/>28.1 Overview 649<br/><br/>28.2 Wind Development in Texas 653<br/><br/>28.3 Wind Integration Issues 656<br/><br/>28.4 Market Impacts 662<br/><br/>28.5 Lessons Learned 663<br/><br/>28.6 Next Steps 664<br/><br/>References 666<br/><br/>29 Wind Power in the New Zealand Power System 667<br/>Ray Brown<br/><br/>29.1 Introduction 667<br/><br/>29.2 Overview of the New Zealand Power System 668<br/><br/>29.3 Overview of Wind Power Installations in New Zealand 672<br/><br/>29.4 Technology Progression 673<br/><br/>29.5 Case Study: West Wind Wind Farm 674<br/><br/>29.6 Case Study: White Hill Wind Farm 680<br/><br/>29.7 Future Challenges and the Next Steps 685<br/><br/>29.8 Conclusion 687<br/><br/>References 688<br/><br/>30 Large-Scale Wind Power Integration into the Chinese Power System 689<br/>Yongning Chi, Zhen Wang, Yan Li and Weisheng Wang<br/><br/>30.1 Introduction 689<br/><br/>30.2 Grid Integration Impact of High Wind Power Penetration 692<br/><br/>30.3 Solutions for the Grid Integration of Large-scale Wind Power 696<br/><br/>30.4 Grid Compliance Testing Technology 702<br/><br/>30.5 Smart Grid and Wind Power in China 704<br/><br/>30.6 Conclusions 705<br/><br/>References 706<br/><br/>31 Isolated Systems with Wind Power 707<br/>E. Ian Baring-Gould and Per Lundsager<br/><br/>31.1 Introduction 707<br/><br/>31.2 Isolated Power Systems 708<br/><br/>31.3 Detailed Overview of Wind–Diesel Power Systems 713<br/><br/>31.4 Systems and Experience 721<br/><br/>31.5 Wind Power Impact on Power Quality 724<br/><br/>31.6 System Modelling Requirements 728<br/><br/>31.7 Issues During the Application of Wind–Diesel Systems 730<br/><br/>31.8 Conclusions and Recommendations 734<br/><br/>References 735<br/><br/>32 Wind Farms in Weak Power Networks in India 739<br/>Poul Sørensen<br/><br/>32.1 Introduction 739<br/><br/>32.2 Network Characteristics 741<br/><br/>32.3 Wind Turbine Characteristics 745<br/><br/>32.4 Wind Turbine Influence on Grids 745<br/><br/>32.5 Grid Influence on Wind Turbines 748<br/><br/>32.6 Conclusions 751<br/><br/>References 751<br/><br/>33 Wind Power Prediction 753<br/>Bernhard Ernst<br/><br/>33.1 Introduction 753<br/><br/>33.2 Forecast Horizons 754<br/><br/>33.3 Principle of Wind Power Prediction Tools 754<br/><br/>33.4 Day-Ahead Prediction 756<br/><br/>33.5 Ensemble Forecast Models/Combination of Forecast Models 757<br/><br/>33.6 Nowcasting and Ramp Forecasting 760<br/><br/>33.7 Forecast Error Evaluation 761<br/><br/>33.8 Lessons Learned during Recent Years 763<br/><br/>33.9 Future Challenges 765<br/><br/>References 765<br/><br/>Part F Dynamic Modelling of Wind Turbines For Power System Studies<br/><br/>34 Introduction to the Modelling of Wind Turbines 769<br/>Hans Knudsen and Jørgen Nygård Nielsen<br/><br/>34.1 Introduction 769<br/><br/>34.2 Basic Considerations Regarding Modelling and Simulations 769<br/><br/>34.3 Overview of Aerodynamic Modelling 770<br/><br/>34.4 Basic Modelling Block Description of Wind Turbines 777<br/><br/>34.5 Per Unit Systems and Data for the Mechanical System 784<br/><br/>34.6 Different Types of Simulations and Requirements for Accuracy 788<br/><br/>34.7 Conclusions 796<br/><br/>References 796<br/><br/>35 A Generic Wind Power Plant Model 799<br/>Abraham Ellis, Yuriy Kazachkov, Juan Sanchez-Gasca, Pouyan Pourbeik, Eduard Muljadi, Michael Behnke, Jens Fortmann and Slavomir Seman<br/><br/>35.1 Introduction 799<br/><br/>35.2 Power Flow Representation and Equivalencing 800<br/><br/>35.3 WECC Generic Dynamic Models 802<br/><br/>35.4 Generic Model Validation 812<br/><br/>35.5 Known Issues and Areas of Improvement 817<br/><br/>35.6 Outlook 819<br/><br/>References 819<br/><br/>36 Reduced-Order Modelling of Wind Turbines 821<br/>Katherine Elkington, J.G. (Han) Slootweg, Mehrdad Ghandhari and Wil L. Kling<br/><br/>36.1 Introduction 821<br/><br/>36.2 Power System Dynamics Simulation 821<br/><br/>36.3 Current Wind Turbine Types 822<br/><br/>36.4 Modelling Assumptions 823<br/><br/>36.5 Model of a Constant-Speed Wind Turbine 824<br/><br/>36.6 Model of a Wind Turbine with a Doubly Fed Induction Generator 832<br/><br/>36.7 Model of a Wind Turbine with a Synchronous Generator 840<br/><br/>36.8 Model Response 845<br/><br/>36.9 Conclusions 845<br/><br/>References 845<br/><br/>37 High-Order Models of Doubly Fed Induction Generators 849<br/>Eva Centeno López and Jonas Persson<br/><br/>37.1 Introduction 849<br/><br/>37.2 Advantages of Using a Doubly Fed Induction Generator 850<br/><br/>37.3 The Components of a Doubly Fed Induction Generator 850<br/><br/>37.4 Machine Equations 851<br/><br/>37.5 Voltage-Source Converter 859<br/><br/>37.6 Sequencer 861<br/><br/>37.7 Simulation of the Doubly Fed Induction Generator 861<br/><br/>37.8 Reducing the Order of the Doubly Fed Induction Generator 862<br/><br/>37.9 Conclusions 863<br/><br/>References 864<br/><br/>38 Full-Scale Verification of Dynamic Wind Turbine Models 865<br/>Vladislav Akhmatov<br/><br/>38.1 Introduction 865<br/><br/>38.2 General Validation Procedure 866<br/><br/>38.3 Measured Parameters and Conversion 868<br/><br/>38.4 Validation Types 871<br/><br/>38.5 Further Validation Specifications 887<br/><br/>38.6 Conclusions 888<br/><br/>References 889<br/><br/>39 Impacts of Wind Power on Power System Stability 891<br/>Eknath Vittal, Andrew Keane, J.G. Slootweg and Wil Kling<br/><br/>39.1 Power System Stability and Security 891<br/><br/>39.2 Rotor Angle Stability 892<br/><br/>39.3 Voltage Stability 897<br/><br/>39.4 Frequency Stability 906<br/><br/>39.5 Dynamic Behaviour of Wind Power Plants 909<br/><br/>39.6 Conclusions 911<br/><br/>References 911<br/><br/>40 Modelling of Large Wind Power Plants 913<br/>Vladislav Akhmatov and Björn Andresen<br/><br/>40.1 Introduction 913<br/><br/>40.2 Detailed Modelling and Short-Term Stability 915<br/><br/>40.3 Aggregated Modelling and Fault Ride-Through 921<br/><br/>40.4 Wind Power Plant Controllers 926<br/><br/>40.5 Conclusions 931<br/><br/>References 932<br/><br/>Part G Future Issues<br/><br/>41 Benefits of Active Management of Distribution Systems 937<br/>Goran Strbac, Predrag Djapić, Thomas Bopp and Nick Jenkins<br/><br/>41.1 Background 937<br/><br/>41.2 Active Management 938<br/><br/>41.3 Quantifying the Benefits of Active Management 941<br/><br/>41.4 Conclusions 949<br/><br/>References 950<br/><br/>42 Wind Power and the Smart Grid 951<br/>J.G. Slootweg and Thomas Ackermann<br/><br/>42.1 Introduction 951<br/><br/>42.2 (Trying to) Define Smart Grids 952<br/><br/>42.3 Why ‘Smarten’ the Grid? And Why Now (or Why Not)? 955<br/><br/>42.4 Goals and Concepts 957<br/><br/>42.5 Wind Power and Smart Grids 962<br/><br/>42.6 Practical Application: The Danish Cell Controller Pilot Project 966<br/><br/>42.7 Conclusions 971<br/><br/>Acknowledgments 972<br/><br/>References 972<br/><br/>43 Reactive Power Capability and Voltage Control with Wind Turbines 975<br/>Volker Diedrichs, Alfred Beekmann and Marcel Kruse<br/><br/>43.1 Relevance and Design Paradigm 975<br/><br/>43.2 Reactive Power Capability of a Wind Turbine 979<br/><br/>43.3 Model-Based Design of Voltage Control Systems for Wind Power Plants 982<br/><br/>43.4 Performance Demonstration, Model Validation and Contingency Tests 988<br/><br/>43.5 Voltage Control of Medium-Voltage Network 989<br/><br/>Reference 997<br/><br/>44 Hydrogen as a Means of Transporting and Balancing Wind Power Production 999<br/>Robert Steinberger-Wilckens<br/><br/>44.1 Introduction 999<br/><br/>44.2 A Brief Introduction to Hydrogen 1000<br/><br/>44.3 Technology and Efficiency 1001<br/><br/>44.4 Reconversion to Electricity: Fuel Cells 1004<br/><br/>44.5 The Potential of Hydrogen in Wind Energy Storage 1006<br/><br/>44.6 Hydrogen Applications for Wind Energy Storage 1008<br/><br/>44.7 A Blueprint for a Hydrogen Distribution System 1012<br/><br/>44.8 Conclusions 1016<br/><br/>Acknowledgments 1016<br/><br/>References 1017<br/><br/>Index 1019<br/>
520 ## - SUMMARY, ETC.
Summary, etc DESCRIPTION<br/><br/>The second edition of the highly acclaimed Wind Power in Power Systems has been thoroughly revised and expanded to reflect the latest challenges associated with increasing wind power penetration levels. Since its first release, practical experiences with high wind power penetration levels have significantly increased. This book presents an overview of the lessons learned in integrating wind power into power systems and provides an outlook of the relevant issues and solutions to allow even higher wind power penetration levels. This includes the development of standard wind turbine simulation models. This extensive update has 23 brand new chapters in cutting-edge areas including offshore wind farms and storage options, performance validation and certification for grid codes, and the provision of reactive power and voltage control from wind power plants. <br/><br/>Key features:<br/><br/>Offers an international perspective on integrating a high penetration of wind power into the power system, from basic network interconnection to industry deregulation;<br/>Outlines the methodology and results of European and North American large-scale grid integration studies;<br/>Extensive practical experience from wind power and power system experts and transmission systems operators in Germany, Denmark, Spain, UK, Ireland, USA, China and New Zealand;<br/>Presents various wind turbine designs from the electrical perspective and models for their simulation, and discusses industry standards and world-wide grid codes, along with power quality issues;<br/>Considers concepts to increase penetration of wind power in power systems, from wind turbine, power plant and power system redesign to smart grid and storage solutions.<br/>Carefully edited for a highly coherent structure, this work remains an essential reference for power system engineers, transmission and distribution network operator and planner, wind turbine designers, wind project developers and wind energy consultants dealing with the integration of wind power into the distribution or transmission network. Up-to-date and comprehensive, it is also useful for graduate students, researchers, regulation authorities, and policy makers who work in the area of wind power and need to understand the relevant power system integration issues.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Authority record control number Online-Ressource
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Ackermann, Thomas, 1966-
Relator term editor
856 ## - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781119941842
Link text Full text available at Wiley Online Library Click here to view
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Source of acquisition Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2022-04-21 Megatexts Phil. Inc. 52460 621.312136 W722 2012 CL-52460 2022-04-21 2022-04-21 EBOOK