000 12355cam a2200373 i 4500
999 _c92502
_d92502
005 20250904104904.0
008 250904s2022 gw m b a001 0 eng d
020 _a9783527344901
020 _a352734490X
020 _z9783527816408
035 _a(OCoLC)1268139136
040 _aUKMGB
_beng
_erda
_cUKMGB
_dBDX
_dOCLCO
_dOCLCF
_dUKMGB
_dYDX
041 _aeng
050 4 _aTD799.85
_b.E54 2022
082 0 4 _a363.72/88
_223
092 _a363.7288
_bE387w 2022
245 0 0 _aElectronic waste :
_brecycling and reprocessing for a sustainable future /
_cedited by Maria E. Holuszko, Amit Kumar, Denise C.R. Espinosa.
264 1 _aWeinheim, Germany :
_bWiley-VCH,
_c[2022]
300 _axiv, 322 pages :
_billustrations ;
_c25 cm.
336 _atext
_btxt
_2rdacontent.
337 _aunmediated
_bn
_2rdamedia.
338 _avolume
_bnc
_2rdacarrier.
504 _aIncludes bibliographical references and index.
505 0 _aTable of Contents Preface xiii 1 Introduction, Vision, and Opportunities 1 Maria E. Holuszko, Denise C. R. Espinosa, Tatiana Scarazzato, and Amit Kumar 1.1 Background 1 1.2 E-Waste 2 1.3 Outline 8 References 9 2 e-Waste Management and Practices in Developed and Developing Countries 15 Pablo Dias, Andréa M. Bernardes, and Nazmul Huda 2.1 Introduction 15 2.2 Overview on WEEE Management and Practices 16 2.3 International WEEE Management and Transboundary Movement 18 2.4 WEEE Management and Practices – Developed and Developing Countries 19 2.5 Developed Countries 21 2.5.1 Switzerland 21 2.5.2 Japan 22 2.5.3 Australia 22 2.6 Developing Countries 23 2.6.1 Brazil 23 2.6.2 India 23 2.6.3 South Africa 24 2.6.4 Nigeria 25 2.6.5 Taiwan 25 2.7 Conclusions 26 References 26 3 e-Waste Transboundary Movement Regulations in Various Jurisdictions 33 Pablo Dias, Md Tasbirul Islam, Bin Lu, Nazmul Huda, and Andréa M. Bernarde 3.1 Background 33 3.2 International Legislation and Transboundary Movement 34 3.3 Extended Producer Responsibility (EPR) 41 3.4 Regulations in Various Jurisdictions 41 3.4.1 Europe 43 3.4.1.1 France 43 3.4.1.2 Germany 43 3.4.1.3 Switzerland 44 3.4.1.4 Norway 44 3.4.2 Americas 45 3.4.2.1 United States of America 45 3.4.2.2 Canada 46 3.4.2.3 Brazil 47 3.4.3 Asia 47 3.4.3.1 Japan 47 3.4.3.2 China 48 3.4.3.3 Taiwan 49 3.4.3.4 India 49 3.4.4 Africa 49 3.4.4.1 South Africa 49 3.4.4.2 Nigeria 50 3.4.5 Australia 50 3.5 Conclusions 51 References 52 4 Approach for Estimating e-Waste Generation 61 Amit Kumar 4.1 Background 61 4.2 Econometric Analysis 61 4.3 Consumption and Use/Leaching/Approximation 1 Method 62 4.4 The Sales/Approximation 2 Method 63 4.5 Market Supply Method 63 4.5.1 Simple Delay 63 4.5.2 Distribution Delay Method 63 4.5.3 Carnegie Mellon Method/Mass Balance Method 64 4.6 Time-Step Method 64 4.7 Summary of Estimation Methods 65 4.8 Lifespan of Electronic Products 65 4.9 Global e-Waste Estimation 66 References 69 5 Materials Used in Electronic Equipment and Manufacturing Perspectives 73 Daniel D. München, Pablo Dias, and Hugo M. Veit 5.1 Introduction 73 5.2 Large Household Appliances (LHA) 75 5.3 Small Household Appliance (SHA) 76 5.4 IT and Telecommunications Equipment 78 5.4.1 Computers and Notebooks 78 5.4.2 Monitors and Screens 79 5.4.3 Mobile Phones (MP) 81 5.4.4 Printed Circuit Boards (PCB) 83 5.5 Photovoltaic (PV) Panels 85 5.6 Lighting Equipment 86 5.7 Toys, Leisure, and Sport 86 5.8 Future Trends in WEEE – Manufacturing, Design, and Demand 89 References 91 6 Recycling Technologies – Physical Separation 95 Amit Kumar, Maria E. Holuszko, and Shulei Song 6.1 Introduction 95 6.2 Dismantling 96 6.3 Comminution/Size Reduction 97 6.3.1 Shredders 97 6.3.2 Hammer Mills 98 6.3.3 High-Voltage Fragmentation 98 6.3.4 Knife Mills 100 6.3.5 Cryogrinding 100 6.4 Particle Size Analysis 100 6.5 Size Separation/Classification 102 6.5.1 Screening 102 6.5.2 Classification 104 6.5.2.1 Centrifugal Classifier 104 6.5.2.2 Gravitational Classifiers 105 6.6 Magnetic Separation 106 6.6.1 Low-Intensity Magnetic Separators 106 6.6.2 High-Intensity Magnetic Separators 107 6.7 Electrical Separation 108 6.7.1 Corona Electrostatic Separation 108 6.7.2 Triboelectric Separation 109 6.7.3 Eddy Current Separation 110 6.8 Gravity Separation 111 6.8.1 Jigs 112 6.8.2 Spirals 112 6.8.3 Shaking Tables 113 6.8.4 Zig-Zag Classifiers 114 6.8.5 Centrifugal Concentrators 114 6.8.6 Dense Medium Separation (DM Bath/Cyclone) 115 6.9 Froth Flotation 116 6.10 Sensor-Based Sorting 119 6.11 Example Flowsheets 119 References 123 7 Pyrometallurgical Processes for Recycling Waste Electrical and Electronic Equipment 135 Jean-Philippe Harvey, Mohamed Khalil, and Jamal Chaouki 7.1 Introduction 135 7.2 Printed Circuit Boards 136 7.3 Pyrometallurgical Processes 137 7.3.1 Smelting 138 7.3.1.1 Copper-Smelting Processes – Sulfide Route 138 7.3.1.2 Copper-Smelting Processes – Secondary Smelters 142 7.3.1.3 Lead-Smelting Processes 142 7.3.1.4 Advantages and Limitations of Smelting Processes 146 7.3.2 Electrochemical Processes 147 7.3.2.1 High-Temperature Electrolysis 148 7.3.2.2 Low-Temperature Electrolysis 149 7.3.3 Other Pyrometallurgical Operations Used in ElectronicWaste Recycling 152 7.3.3.1 Roasting 152 7.3.3.2 Molten Salt Oxidation Treatment 152 7.3.3.3 Distillation 153 7.3.3.4 Pyrolysis 155 References 157 8 Recycling Technologies – Hydrometallurgy 165 Denise C. R. Espinosa, Rafael P. de Oliveira, and Thamiris A. G. Martins 8.1 Background 165 8.2 Waste Printed Circuit Boards (WPCBs) 167 8.3 Photovoltaic Modules (PV) 172 8.4 Batteries 176 8.5 Light-Emitting Diodes (LEDs) 178 8.6 Trends 180 References 181 9 Recycling Technologies – Biohydrometallurgy 189 Franziska L. Lederer and Katrin Pollmann 9.1 Introduction 189 9.2 Bioleaching: Metal Winning with Microbes 189 9.3 Biosorption: Selective Metal Recovery from Waste Waters 191 9.3.1 Biosorption Via Metal Selective Peptides 194 9.3.2 Chelators Derived from Nature 196 9.4 Bioflotation: Separation of Particles with Biological Means 197 9.5 Bioreduction and Bioaccumulation: Nanomaterials from Waste 199 9.6 Conclusion 201 References 202 10 Processing of Nonmetal Fraction from Printed Circuit Boards and Reutilization 213 Amit Kumar and Maria E. Holuszko 10.1 Background 213 10.2 Nonmetal Fraction Composition 214 10.3 Benefits of NMF Recycling 215 10.3.1 Economic Benefits 215 10.3.2 Environmental Protection and Public Health 216 10.4 Recycling of NMF 218 10.4.1 Physical Recycling 218 10.4.1.1 Size Classification 219 10.4.1.2 Gravity Separation 219 10.4.1.3 Magnetic Separation 220 10.4.1.4 Electrical Separation 220 10.4.1.5 Froth Flotation 220 10.4.2 Chemical Recycling 221 10.5 Potential Usage 221 References 223 11 Life Cycle Assessment of e-Waste – Waste Cellphone Recycling 231 Pengwei He, Haibo Feng, Gyan Chhipi-Shrestha, Kasun Hewage, and Rehan Sadiq 11.1 Introduction 231 11.2 Background 232 11.2.1 Theory of Life Cycle Assessment 232 11.3 LCA Studies on WEEE 234 11.3.1 Applications on WEEE Management Strategy 234 11.3.2 Applications on WEEE Management System 235 11.3.3 Applications on Hazardous Potential of WEEE Management and Recycling 236 11.4 Case Study 236 11.4.1 Goal and Scope Definition 237 11.4.1.1 Functional Unit 237 11.4.1.2 System Boundary 238 11.4.2 Life Cycle Inventory 238 11.4.2.1 Formal Collection 239 11.4.2.2 Informal Collection 239 11.4.2.3 Mechanical Dismantling 239 11.4.2.4 Plastic Recycling 240 11.4.2.5 Screen Glass Recycling 240 11.4.2.6 Battery Disposal 240 11.4.2.7 Electronic Refining for Materials 241 11.4.3 Life Cycle Impact Assessment 241 11.4.4 Results 241 11.4.4.1 Feature Phone Formal Collection Scenario 241 11.4.4.2 Feature Phone Informal Collection Scenario 243 11.4.4.3 Smartphone Formal Collection Scenario 244 11.4.4.4 Smartphone Informal Collection Scenario 246 11.4.5 Discussion 247 11.5 Conclusion 249 References 250 12 Biodegradability and Compostability Aspects of Organic Electronic Materials and Devices 255 Abdelaziz Gouda, Manuel Reali, Alexandre Masson, Alexandra Zvezdin,Nia Byway, Denis Rho, and Clara Santato 12.1 Introduction 255 12.1.1 Technological Innovation and Waste 255 12.1.2 Eco-friendliness 257 12.1.3 Organic Electronics 257 12.1.4 Opportunities for Green Organic Electronics 258 12.2 State of the Art in Biodegradable Electronics 258 12.3 Organic Field-Effect Transistors (OFETs) 260 12.3.1 Fundamentals 260 12.3.2 Anthraquinone, Benzoquinone, and Acenequinone 262 12.3.3 Quinacridones 262 12.4 Electrochemical Energy Storage 264 12.4.1 Quinones 264 12.4.2 Dopamine 265 12.4.3 Melanins 265 12.4.4 Tannins 268 12.4.5 Lignin 269 12.5 Biodegradation in Natural and Industrial Ecosystems 269 12.5.1 Degradation and Biodegradation 270 12.5.2 Composting Process 271 12.5.3 Materials Half-Life Under Composting Conditions 274 12.5.4 Biodegradation in the Environment 275 12.6 Microbiome in Natural and Industrial Ecosystems 276 12.6.1 The Ruminant–Hay Natural Ecosystem 279 12.6.2 The Termite–Wood Natural Ecosystem 280 12.6.3 The Industrial Composter–Biowaste Ecosystem 281 12.6.3.1 Municipal Composting Facility 281 12.6.3.2 Engineered Composting Facility 282 12.6.4 Specialized Inoculant Adapted to Organic Matter 282 12.6.5 Specialized Inoculant Adapted to Heavy Metals 283 12.7 Concluding Remarks and Perspectives 284 Acknowledgment 285 References 285 13 Circular Economy in Electronics and the Future of e-Waste 299 Nani Pajunen and Maria E. Holuszko 13.1 Introduction 299 13.2 Digitalization and the Need for Electronic Devices 301 13.3 Recycling and Circular Economy 302 13.4 Challenges for e-Waste Recycling and Circular Economy 304 13.5 Drivers for Change – Circular Economy 306 13.6 Demand for Recyclable Products 309 13.7 Summary 310 References 312 Index 315
545 0 _aAbout the Author Maria E. Holuszko is Assistant Professor at Norman B. Keevil Mining Engineering, University of British Columbia (Canada) she is Co-founder and Leading Scientist at Urban Mining Innovation Center. She studied Mineral Processing at the Silesian University of Technology (Poland) before gaining her Master’s and PhD degrees in Mineral Processing at the University of British Columbia Vancouver, Canada. Her current research interests are in recovery of value from industrial steams and in the recycling of electronic waste with the aim of recovery of critical metals and non-metal fractions to facilitate circularity in electronics. Amit Kumar received his PhD from the University of British Columbia in e-waste recycling and completed his undergraduate studies in Mineral Engineering at the Indian School of Mines (India) and received his Master’s Degree at the University of British Columbia. His work is in the field of recycling of electrical and electronic wastes to achieve zero-waste scenario. Denise C.R. Espinosa is an Associate Professor at the University of São Paulo (Brazil) and coordinates the Laboratory of Recycling, Waste Treatment, and Extraction (LAREX) at the Department of Chemical Engineering. She completed her Master’s and Ph.D. Degree in Department of Metallurgical and Materials Engineering at the University of São Paulo. Her work is in the recycling of electronic wastes and industrial and mining wastes towards sustainable development.
650 0 _aRecycling (Waste, etc.)
_xTechnological innovations.
650 0 _aSustainable development.
655 4 _aElectronic books.
700 1 _aHoluszko, M. E.,
_eeditor.
700 1 _aKumar, Amit,
_eeditor.
700 1 _aEspinosa, Denise C. R.,
_eeditor.
856 4 0 _uhttps://onlinelibrary.wiley.com/doi/book/10.1002/9783527816392
_yFull text is available at Wiley Online Library Click here to view
942 _2ddc
_cER