000 08718cam a2200433 i 4500
999 _c92279
_d92279
005 20250924095507.0
006 m o d
007 cr |n|||||||||
008 250829s2022 enkm ob u001 0 eng d
020 _a9781789450651
020 _a9781119986584
_q(electronic book)
020 _a1119986583
_q(electronic book)
020 _a9781119986607
_q(electronic book)
020 _a1119986605
_q(electronic book)
020 _z1789450659
_q(hardcover)
020 _z9781789450651
_q(hardcover)
035 _a(OCoLC)1323454037
040 _aYDX
_beng
_erda
_cYDX
_dYDX
_dOCLCQ
_dDG1
041 _aeng
050 4 _aQP105.4
_b.B56 2022
082 0 4 _a612.1/181
_223/eng/20220706
245 0 0 _aBiological flow in large vessels :
_bdialog between numerical modeling and in vitro/in vivo experiments /
_ccoordinated by Val�erie Deplano, Jos�e-Maria Fullana, Claude Verdier.
264 1 _aLondon :
_bISTE Ltd ;
_aHoboken, NJ :
_bJohn Wiley & Sons, Inc.,
_c2022.
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent.
337 _acomputer
_bc
_2rdamedia.
338 _aonline resource
_bcr
_2rdacarrier.
504 _aIncludes bibliographical references and index.
505 0 _aTable of Contents Preface xi Valérie DEPLANO, José-Maria FULLANA and Claude VERDIER Chapter 1. Hemodynamics and Hemorheology 1 Thomas PODGORSKI 1.1. Structure and function of the circulatory system 1 1.2. Blood composition 5 1.3. The red blood cell: structure and dynamics 8 1.3.1. Red blood cell properties 8 1.3.2. Erythrocyte pathologies 11 1.3.3. Red blood cell dynamics 15 1.4. Rheology and dynamics 17 1.4.1. Phenomenology of blood rheology 17 1.4.2. Red blood cell aggregation 21 1.4.3. Dynamics of microcirculation 27 1.5. Conclusion 31 1.6. References 32 Chapter 2. CFD Analyses of Different Parameters Influencing the Hemodynamic Outcomes of Complex Aortic Endovascular Repair 43 Sabrina BEN-AHMED, Jean-Noël ALBERTINI, Jean-Pierre FAVRE, C. Alberto FIGUEROA, Eugenio ROSSET, Francesca CONDEMI and Stéphane AVRIL 2.1. Introduction 43 2.2. Methods 45 2.3. Results 48 2.3.1. Model without stenosis 50 2.3.2. Model with 40% diameter stenosis 53 2.3.3. Model with 70% diameter stenosis 56 2.4. Discussion 58 2.4.1. Velocity and flow 59 2.4.2. Pressure 60 2.4.3. TAWSS 60 2.4.4. PAS 61 2.4.5. Limitations 62 2.5. Conclusion 63 2.6. Acknowledgments 63 2.7. References 64 Chapter 3. Vascular Geometric Singularities, Hemodynamic Markers and Pathologies 69 Valérie DEPLANO and Carine GUIVIER-CURIEN 3.1. Introduction 69 3.2. General characteristics of blood flows at the macroscopic scale 70 3.3. Several geometric singularities of the cardiovascular system 73 3.3.1. Curvatures and bifurcations 73 3.3.2. Cross-section constriction 78 3.3.3. Cross-section enlargement 80 3.3.4. Valves 82 3.4. Hemodynamic markers 85 3.4.1. Indexes derived from wall shear stress 86 3.4.2. Indexes describing VSs 88 3.5. Correlation between hemodynamic markers and pathologies: some examples 90 3.5.1. WSS and pathologies 92 3.5.2. Hemodynamic markers and thrombus 95 3.6. Conclusion and perspectives 98 3.7. References 99 Chapter 4. Role of Arterial Blood Flow in Atherosclerosis 109 Guillermo VILAPLANA and Abdul I. BARAKAT 4.1. Introduction 109 4.2. Role of arterial fluid mechanics in atherosclerosis 110 4.2.1. Atherosclerosis initiation and progression 110 4.2.2. Role of arterial flow in atherosclerosis 113 4.3. An illustrative example of the complexity of arterial flow fields: fluid dynamic interactions between two arterial branches 115 4.3.1. The specific problem addressed 115 4.3.2. Materials and methods 116 4.3.3. Results 118 4.3.4. Discussion 134 4.4. Concluding remarks 135 4.5. References 136 Chapter 5. Patient-specific Hemodynamic Simulations: Model Parameterization from Clinical Data to Enable Intervention Planning 139 Irene E. VIGNON-CLEMENTEL and Sanjay PANT 5.1. Introduction 139 5.2. Multiscale models: do we need patient-specific data? 142 5.2.1. Assessing function of a new procedure/device 142 5.2.2. Optimizing the procedure/device for an individual patient 143 5.2.3. Population studies 143 5.3. How do we include patient-specific data? 144 5.3.1. Type of clinical data available and associated challenges 145 5.3.2. Establishing if the resistance of the 3D part is negligible or not, and parameterization in case it is 147 5.3.3. Resistance of the 3D part is not negligible 149 5.4. When models fall short of expectations: toward adaptation 154 5.4.1. Liver hepatectomy and blood loss 154 5.4.2. Pulmonary stenosis alleviation and vascular adaptation 155 5.5. Conclusion 156 5.6. Acknowledgments 157 5.7. References 158 Chapter 6. Reduced-order Models of Blood Flow: Application to Arterial Stenoses 163 Jeanne VENTRE, José-Maria FULLANA, Pierre-Yves LAGRÉE, Francesca RAIMONDI and Nathalie BODDAERT 6.1. Introduction 163 6.2. Blood flow modeling 165 6.2.1. Two-dimensional axisymmetric model 166 6.2.2. Multi-ring model 167 6.2.3. One-dimensional model 169 6.2.4. Zero-dimensional model 169 6.3. Validation of the models 170 6.3.1. The entry effect 170 6.3.2. The Womersley solution in an elastic artery 171 6.4. Application to arterial stenoses 173 6.5. Conclusion 179 6.6. References 179 Chapter 7. YALES2BIO: A General Purpose Solver Dedicated to Blood Flows 183 Simon MENDEZ, Alain BÉROD, Christophe CHNAFA, Morgane GARREAU, Etienne GIBAUD, Anthony LARROQUE, Stephanie LINDSEY, Marco MARTINS AFONSO, Pascal MATTÉOLI, Rodrigo MENDEZ ROJANO, Dorian MIDOU, Thomas PUISEUX, Julien SIGÜENZA, Pierre TARACONAT, Vladeta ZMIJANOVIC and Franck NICOUD 7.1. Methods and validation 184 7.1.1. Food and Drug Administration case 186 7.1.2. Optical tweezers 187 7.1.3. Red blood cell self-organization 189 7.2. Simulation as support of modeling efforts 189 7.2.1. Single cell dynamics 190 7.2.2. Flow diverters 191 7.2.3. Echocardiography 192 7.3. Simulations for industrial applications 194 7.3.1. Flow in the Carmat artificial heart 194 7.3.2. Red blood cell dynamics in Horiba Medical’s blood analyzers 195 7.4. Current developments 195 7.4.1. Thrombosis 196 7.4.2. In Silico MRI 197 7.4.3. Multi-cells 199 7.5. Acknowledgments 200 7.6. References 200 Chapter 8. Capsule Relaxation Under Flow in a Tube 207 Bruno SARKIS, Anne-Virginie SALSAC and José-Maria FULLANA 8.1. Introduction 207 8.2. Overview of the physical problem 209 8.2.1. Fluid solver 210 8.2.2. Solid solver 212 8.2.3. Fluid–structure coupling by the IBM method 213 8.3. Transient flow of a microcapsule into a microfluidic channel with a step 215 8.3.1. Capsule flow in the Stokes regime 215 8.3.2. Relaxation dynamics in the Stokes regime 217 8.3.3. Relaxation dynamics in the Navier–Stokes regime 221 8.4. Discussion and conclusion 223 8.5. Acknowledgements 225 8.6. References 225 Conclusion: Words and Things 229 Valérie DEPLANO, José-Maria FULLANA and Claude VERDIER List of Authors 233 Index 237
545 0 _aAbout the Author Valerie Deplano is research director at CNRS, and an active member of the CNRS research group MECABIO, GDR3570, dealing with the mechanics of materials and biological fluids. She is the former head of the GDR2760 research group, focusing on the biomechanics of fluids and transfers, fluid-biological structure interaction, and President of the Biomechanics Society 2018-2021. Jose-Maria Fullana is a Professor at Sorbonne University, Paris, and an active member of the CNRS research group MECABIO, GDR3570, dealing with the mechanics of materials and biological fluids. Claude Verdier is research director at CNRS, and an active member of the CNRS research group GDR3570, MECABIO, dealing with the mechanics of materials and biological fluids. He is the former leader of the GDR3570 research group.
650 0 _aBlood flow
_0http://id.loc.gov/authorities/subjects/sh85014980
_xMathematical models.
_0http://id.loc.gov/authorities/subjects/sh2002007921.
650 0 _aMedical informatics.
_0http://id.loc.gov/authorities/subjects/sh89005069.
655 4 _aElectronic books.
700 1 _aDeplano, Val�erie,
_econtributor.
700 1 _aFullana, Jos�e-Maria,
_econtributor.
700 1 _aVerdier, Claude,
_econtributor.
856 _uhttps://onlinelibrary.wiley.com/doi/book/10.1002/9781119986607
_yFull text is available at Wiley Online Library Click here to view
942 _2ddc
_cER