000 | 15198cam a2200517Ii 4500 | ||
---|---|---|---|
999 |
_c92027 _d92027 |
||
005 | 20250822112846.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 250822s2021 njum ob u001 0 eng | ||
015 |
_aGBC1I6468 _2bnb |
||
020 | _a9781119674863 | ||
020 |
_a9781119674887 _q(epub) |
||
020 | _a1119674883 | ||
020 |
_a9781119674900 _q(adobe pdf) |
||
020 | _a1119674905 | ||
020 |
_z9781119674863 _q(hardback) |
||
020 |
_a9781119674870 _q(electronic bk.) |
||
020 |
_a1119674875 _q(electronic bk.) |
||
020 | _z1119674867 | ||
035 |
_a(OCoLC)1268544658 _z(OCoLC)1286621506 |
||
037 |
_a9781119674887 _bWiley |
||
040 |
_aDLC _beng _erda _cDLC _dOCLCO _dOCLCF _dUKMGB _dDG1 |
||
041 | _aeng | ||
042 | _apcc | ||
050 | 0 | 0 | _aTA660.T34 |
082 | 0 | 0 |
_a681/.76041 _223 |
100 | 1 |
_aGreulich, Owen R., _0http://id.loc.gov/authorities/names/n2014025467 _eauthor. |
|
245 | 1 | 0 |
_aFabrication of metallic pressure vessels / _cOwen R. Greulich, Maan H. Jawad. |
250 | _aFirst edition. | ||
264 | 1 |
_aHoboken, NJ : _bJohn Wiley & Sons, Inc., _c2021. |
|
300 | _a1 online resource. | ||
336 |
_atext _btxt _2rdacontent. |
||
337 |
_acomputer _bc _2rdamedia. |
||
338 |
_aonline resource _bcr _2rdacarrier. |
||
490 | 1 | _aWiley-ASME Press Series. | |
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aTable of Contents Preface xvii Acknowledgments xix 1 Introduction 1 1.1 Introduction 1 1.2 Fabrication Sequence 1 1.3 Cost Considerations 5 1.3.1 Types of costs 5 1.3.2 Design choices 6 1.3.3 Shipping 11 1.3.4 General approach to cost control 12 1.4 Fabrication of Nonnuclear Versus Nuclear Pressure Vessels 12 1.5 Units and Abbreviations 13 1.6 Summary 14 2 Materials of Construction 15 2.1 Introduction 15 2.2 Ferrous Alloys 16 2.2.1 Carbon steels (Mild steels) 16 2.2.2 Low alloy steels (Cr–Mo steels) 18 2.2.3 High alloy steels (stainless steels) 19 2.2.4 Cost of ferrous alloys 20 2.3 Nonferrous Alloys 20 2.3.1 Aluminum alloys 20 2.3.2 Copper alloys 22 2.3.3 Nickel alloys 30 2.3.4 Titanium alloys 30 2.3.5 Zirconium alloys 30 2.3.6 Tantalum alloys 32 2.3.7 Price of nonferrous alloys 33 2.4 Density of Some Ferrous and Nonferrous Alloys 34 2.5 Nonmetallic Vessels 35 2.6 Forms and Documentation 35 2.7 Miscellaneous Materials 38 2.7.1 Cast iron 38 2.7.2 Gaskets 38 References 43 3 Layout 44 3.1 Introduction 44 3.2 Applications 44 3.3 Tools and Their Use 45 3.4 Layout Basics 45 3.4.1 Projection 46 3.4.2 Triangulation 46 3.5 Material Thickness and Bending Allowance 49 3.6 Angles and Channels 50 3.7 Marking Conventions 52 3.8 Future of Plate Layout 54 Reference 54 4 Material Forming 55 4.1 Introduction 55 4.1.1 Bending versus three-dimensional forming 55 4.1.2 Other issues 55 4.1.3 Plastic Theory 56 4.1.4 Forming limits 62 4.1.5 Grain direction 64 4.1.6 Cold versus hot forming 64 4.1.7 Spring back 64 4.2 Brake Forming (Angles, Bump-Forming) 65 4.2.1 Types of dies 67 4.2.2 Brake work forming limits 68 4.2.3 Crimping 68 4.2.4 Bending of pipes and tubes 69 4.2.5 Brake forming loads 70 4.3 Roll Forming (Shells, Reinforcing Pads, Pipe/Tube) 70 4.3.1 Pyramid rolls 70 4.3.2 Pinch rolls 71 4.3.3 Two-roll systems 71 4.3.4 Rolling radius variability compensation 72 4.3.5 Heads and caps 72 4.3.6 Hot forming 74 4.4 Tolerances 74 4.4.1 Brake forming tolerances 75 4.4.2 Roll forming tolerances 76 4.4.3 Press forming tolerances 76 4.4.4 Flanging tolerances 76 Reference 76 5 Fabrication 77 5.1 Introduction 77 5.2 Layout 77 5.3 Weld Preparation 78 5.3.1 Hand and automatic grinders 78 5.3.2 Nibblers 78 5.3.3 Flame cutting 79 5.3.4 Boring mills 79 5.3.5 Lathes 80 5.3.6 Routers 80 5.3.7 Other cutter arrangements 82 5.4 Forming 82 5.5 Vessel Fit Up and Assembly 83 5.5.1 The fitter 84 5.5.2 Fit up tools 84 5.5.3 Persuasion and other fit up techniques 84 5.5.4 Fixturing 85 5.5.5 Welding fit up 86 5.5.6 Weld shrinkage 88 5.5.7 Order of assembly 89 5.6 Welding 90 5.6.1 Welding position 90 5.6.2 Welding residual stresses 90 5.6.3 Welding positioners, turning rolls, column and boom weld manipulators 91 5.7 Correction of Distortion 94 5.8 Heat Treatment 94 5.8.1 Welding preheat 95 5.8.2 Interpass temperature 95 5.8.3 Post weld heat treatment 96 5.9 Post-fabrication Machining 96 5.10 Field Fabrication – Special Issues 96 5.10.1 Exposure to the elements 97 5.10.2 Staging area 97 5.10.3 Tool and equipment availability 98 5.10.4 Staffing 98 5.10.5 Material handling 98 5.10.6 Energy sources 99 5.10.7 PWHT 99 5.10.8 Layout 100 5.10.9 Fit up 100 5.10.10 Welding 100 5.11 Machining 101 5.12 Cold Springing 101 6 Cutting and Machining 102 6.1 Introduction 102 6.2 Common Cutting Operations for Pressure Vessels 102 6.3 Cutting Processes 103 6.3.1 Plate cutting 103 6.3.2 Pipe, bar, and structural shape cutting 108 6.4 Common Machining Functions and Processes 110 6.5 Common Machining Functions for Pressure Vessels 111 6.5.1 Weld preparation 111 6.5.2 Machining of flanges 111 6.5.3 Tubesheets 112 6.5.4 Heat exchanger channels 113 6.5.5 Heat exchanger baffles 113 6.6 Setup Issues 114 6.7 Material Removal Rates 116 6.7.1 Feed 116 6.7.2 Speed 116 6.7.3 Depth of cut 116 6.8 Milling 117 6.9 Turning and Boring 119 6.10 Machining Centers 120 6.11 Drilling 120 6.12 Tapping 121 6.13 Water Jet Cutting 122 6.14 Laser Machining 123 6.15 Reaming 123 6.16 Electrical Discharge Machining, Plunge and Wire 123 6.17 Electrochemical Machining 124 6.18 Electron Beam Machining 124 6.19 Photochemical Machining 124 6.20 Ultrasonic Machining 125 6.21 Planing and Shaping 125 6.22 Broaching 125 6.23 3D Printing 125 6.24 Summary 126 Reference 126 7 Welding 127 7.1 Introduction 127 7.2 Weld Details and Symbols 127 7.2.1 Single fillet welds 128 7.2.2 Double fillet welds 128 7.2.3 Intermittent fillet welds 128 7.2.4 Single-bevel butt welds 129 7.2.5 Double-bevel butt welds 129 7.2.6 J-groove or double J-groove welds 129 7.2.7 Backing strips 131 7.2.8 Consumables 131 7.2.9 Tube-to-tubesheet welds 131 7.2.10 Weld symbols 131 7.3 Weld Processes 132 7.3.1 Diffusion welding (DFW) 135 7.3.2 Electron beam welding (EBW) 135 7.3.3 Electrogas welding (EGW) 136 7.3.4 Electroslag welding (ESW) 136 7.3.5 Flux-cored arc welding (FCAW) 137 7.3.6 Flash welding 137 7.3.7 Friction stir welding (FSW) 137 7.3.8 Gas metal-arc welding (GMAW) 138 7.3.9 Gas tungsten-arc welding (GTAW) 138 7.3.10 Laser beam welding (LBW) 139 7.3.11 Orbital welding 140 7.3.12 Oxyfuel gas welding (OFW) 140 7.3.13 Plasma-arc welding (PAW) 141 7.3.14 Resistance spot welding (RSW) 141 7.3.15 Resistance seam welding (RSEW) 142 7.3.16 Submerged-arc welding (SAW) 142 7.3.17 Shielded metal-arc welding (SMAW) 142 7.3.18 Stud welding 143 7.4 Weld Preheat and Interpass Temperature 143 7.5 Post Weld Heat Treating 143 7.6 Welding Procedures 143 7.7 Control of Residual Stress and Distortion 144 7.8 Material Handling to Facilitate Welding 145 7.9 Weld Repair 145 7.10 Brazing 145 7.10.1 Applications 145 7.10.2 Filler metal 145 7.10.3 Heating 145 7.10.4 Flux 145 7.10.5 Brazing procedures 146 Reference 146 8 Welding Procedures and Post Weld Heat Treatment 147 8.1 Introduction 147 8.2 Welding Procedures 147 8.3 Weld Preparation Special Requirements 153 8.4 Weld Joint Design and Process to Reduce Stress and Distortion 156 8.4.1 Reduced heat input 156 8.4.2 Lower temperature differential 156 8.4.3 Choice of weld process 156 8.4.4 Weld configuration and sequencing 157 8.5 Weld Preheat and Interpass Temperature 157 8.6 Welder Versus Welding Operator 158 8.6.1 Welders 158 8.6.2 Welding operators 158 8.6.3 Differences in qualifications 159 8.7 Weld Repair 159 8.7.1 Slag inclusion during welding 159 8.7.2 Surface indications after cooling of welds 159 8.7.3 Delayed hydrogen cracking after welding 159 8.7.4 Cracks occurring subsequent to PWHT 160 8.8 Post Weld Heat Treating 160 8.8.1 PWHT of carbon steels 160 8.8.2 PWHT of low alloy steels 161 8.8.3 Some general PWHT requirements for carbon steels and low alloy steels 161 8.8.4 PWHT of stainless steel 162 8.8.5 PWHT of nonferrous alloys 162 8.9 Cladding, Overlay, and Loose Liners 162 8.9.1 Cladding 162 8.9.2 Weld overlay 163 8.9.3 Loose liners 164 8.10 Brazing 164 8.10.1 Applications 165 8.10.2 Filler metal 165 8.10.3 Heating 165 8.10.4 Flux 166 8.10.5 Brazing procedures 166 Reference 166 9 Fabrication of Pressure Equipment Having Unique Characteristics 167 9.1 Introduction 167 9.2 Heat Exchangers 167 9.2.1 U-tube heat exchangers 169 9.2.2 Fixed heat exchangers 170 9.2.3 Floating head heat exchangers 170 9.2.4 Attachment of tubes-to-tubesheets and tubes-to-headers 170 9.2.5 Expansion joints 176 9.2.6 Assembly of heat exchangers 178 9.3 Dimpled Jackets 180 9.4 Layered Vessels 181 9.4.1 Introduction 181 9.4.2 Fabrication of layered shells 181 9.5 Rectangular Vessels 187 9.6 Vessels with Refractory and Insulation 188 9.7 Vessel Supports 190 9.8 Summary 191 References 192 10 Surface Finishes 193 10.1 Introduction 193 10.2 Types of Surface Finishes 193 10.2.1 Surface characteristics, unfinished 194 10.2.2 Passivation 195 10.2.3 Applied coatings 196 Reference 199 11 Handling and Transportation 200 11.1 Introduction 200 11.2 Handling of Vessels and Vessel Components Within the Fabrication Plant 200 11.3 Transportation of Standard Loads 202 11.4 Transportation of Heavy Vessels 204 11.4.1 Handling heavy vessels using specialty cranes 204 11.4.2 Shipping by truck 204 11.4.3 Shipping by rail 208 11.4.4 Shipping by barge or ship 212 11.4.5 Shipping by air 215 11.5 Summary 216 12 ASME Code Compliance and Quality Control System 217 12.1 Need for ASME Code Compliance 217 12.2 What the ASME Code Provides 217 12.3 Fabrication in Accordance with the ASME Code 217 12.4 ASME Code Stamped Vessels 218 12.4.1 Design calculations 218 12.4.2 Fabrication drawings 218 12.4.3 Material mill test reports 218 12.4.4 WPS for the vessel welds 219 12.4.5 Records of nondestructive (NDE) examination 219 12.4.6 Record of PWHT 219 12.4.7 Record of hydrotesting 220 12.4.8 Manufacturer’s Data Report, U-1 Form 220 12.4.9 Manufacturer’s Partial Data Report, U-2 form 222 12.4.10 Name plate 222 12.5 Authorized Inspector and Authorized Inspection Agency 224 12.6 Quality Control System for Fabrication 224 12.6.1 Organizational chart 225 12.6.2 Authority and responsibility 225 12.6.3 Quality control system 225 12.6.4 Design and drawing control 225 12.6.5 Material control 225 12.6.6 Production control 225 12.6.7 Inspection 225 12.6.8 Hydrostatic and pneumatic testing 225 12.6.9 Code stamping 226 12.6.10 Discrepancies and nonconformances 226 12.6.11 Welding 226 12.6.12 Nondestructive examination 226 12.6.13 Heat treatment control 226 12.6.14 Calibration of measuring and test equipment 226 12.6.15 Records retention 226 12.6.16 Handling, storage, and shipping 226 12.7 Additional Stamps Required for Pressure Vessels 226 12.7.1 National Board stamping, NB 227 12.7.2 Jurisdictional stamping 227 12.7.3 User stamping 227 12.7.4 Canadian Registration Numbers 227 12.8 Non-Code Jurisdictions 227 12.9 Temporary Shop Locations 228 Reference 229 13 Repair of Existing Equipment 230 13.1 Introduction 230 13.2 National Board Inspection Code, NBIC, NB-23 231 13.2.1 Repairs 231 13.2.2 Alterations 232 13.2.3 Reratings 232 13.2.4 Post weld heat treating of repaired components 232 13.2.5 Hydrostatic or pneumatic testing of repaired vessels 234 13.3 ASME Post Construction Code, PCC-2 236 13.3.1 External weld buildup to repair internal thinning 236 13.3.2 Full encirclement steel reinforcing sleeves for pipes in corroded areas 237 13.3.3 Welded hot taps 238 13.4 API Pressure Vessel Inspection Code, API-510 241 13.5 API 579/ASME FFS-1 Fitness-For-Service Code 242 13.6 Miscellaneous Repairs 242 13.6.1 Removal of seized nuts 243 13.6.2 Structural supports and foundation 243 References 244 Appendix A Units and Conversion Factors 245 Appendix B Welding Symbols 247 Appendix C Weld Process Characteristics 251 Appendix D Weld Deposition 254 Appendix E Shape Properties 257 Appendix F Pipe and Tube Dimensions and Weights 263 Appendix G Bending and Expanding of Pipes and Tubes 278 Appendix H Dimensions of Some Commonly Used Bolts and Their Required Minimum Spacing 286 Appendix I Shackles 288 Appendix J Shears, Moments, and Deflections of Beams 295 Appendix K Commonly Used Terminology 299 Index 304 | |
520 |
_a"Much of the equipment used in the refining and processing industries is known as Process Equipment. Most pieces of process equipment are designed to perform specific, singular tasks. Process equipment can be used for tasks a varied as storage, controlling flow, and containing chemical reactions. Fabrication involves making products and components from raw or semi-finished materials by cutting, shaping and joining sections of metal together. Fabrication processes include cutting, folding, machining, shearing, stamping and welding"-- _cProvided by publisher. |
||
545 | 0 | _aAbout the Author Owen R. Greulich is active on the High Pressure Task Group of the American Society of Mechanical Engineers’ Process Piping Code Committee and the American Institute of Aeronautics and Astronautics (AIAA) Aerospace Pressure Vessel Committee. He previously served as Pressure and Energetic Systems Safety Manager in the Office of Safety and Mission Assurance at NASA Headquarters, responsible for the safety of pressure and vacuum systems. Maan H. Jawad is President of Global Engineering & Technology in the United States. He was previously on the Board of Directors and Director of Engineering of the Nooter Corporation. He is active on various ASME Codes and Standards committees and the author of numerous books and publications related to pressure vessels. | |
650 | 0 |
_aPressure vessels _xDesign and construction. _0http://id.loc.gov/authorities/subjects/sh2010106472. |
|
655 | 4 | _aElectronic books. | |
700 | 1 |
_aJawad, Maan H., _0http://id.loc.gov/authorities/names/n83208481 _eauthor. |
|
830 | 0 |
_aWiley-ASME Press series. _0http://id.loc.gov/authorities/names/no2017152507. |
|
856 | 4 | 0 |
_uhttps://onlinelibrary.wiley.com/doi/book/10.1002/9781119674870 _yFull text is available at Wiley Online Library Click here to view |
942 |
_2ddc _cER |