000 01906nab a22002177a 4500
999 _c84133
_d84133
005 20230202093413.0
008 230202b ||||| |||| 00| 0 eng d
100 1 _aPaman, Joshua Mari J.
_eauthor
245 1 0 _aMeasles outbreak detection in Metro Manila: comparisons between ARIMA and INAR models
264 4 _c2017
520 3 _aIt is the goal of many developing countries to stop the spread of diseases. Part of this effort is to conduct ongoing surveillance of disease transmission to foresee future epidemics. However, in the Philippines, there is a lack of an automated method in determining their presence. This paper presents a comparison between an integer-valued autoregressive (INAR) model and the more commonly known autoregressive integrated moving average(ARIMA) models in detecting the presence of disease outbreaks. Daily measles reports spanning from January 1, 2010 to January 14, 2015 were obtained from the Department of Health and were used to motivate this study. Synthetic datasets were generated using a modified Serfling model. Similarity tests using a dynamic time warping algorithm were conducted to ensure that simulated datasets observe similar behavior with the original set. False positive rates, sensitivity rates, and delay in detection were then evaluated between the two models. The results gathered show that an INAR model performs favorably compared to an ARIMA model, posting higher sensitivity rates, similar lag times, and equivalent false positive rates for three-day signal events.
650 0 _aMeasles
650 0 _aAlgorithms
651 0 _aMetro Manila (Philippines)
700 1 _aSantiago, Frank Niccolo M.
_eauthor
700 1 _aMojica, Vio Jianu C.
_eauthor
700 1 _aCo, Frumencio F.
_eauthor
700 1 _aLeong, Robert Neil F.
_eauthor
773 _tThe Philippine Statistician
_gvol. 66, no. 2: (2017), pages 71-91
942 _2ddc
_cART