000 01209nam a22002657a 4500
999 _c63015
_d63015
003 CITU
005 20210430032225.0
008 210430b ||||| |||| 00| 0 eng d
020 _a9781292023625
040 _aCITU LRAC
082 _a514 M925 2014
100 1 _aMunkres, James
_eauthor
245 _aTopology
264 1 _aEdinburgh:
_bPearson,
_c2014
300 _aII, 504 pages :
_billustrations ;
_c28 cm.
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bnc
_2rdamedia
338 _avolume
_2rdacarrier
500 _aIncludes index.
520 _aI. GENERAL TOPOLOGY. 1. Set Theory and Logic. 2. Topological Spaces and Continuous Functions. 3. Connectedness and Compactness. 4. Countability and Separation Axioms. 5. The Tychonoff Theorem. 6. Metrization Theorems and Paracompactness. 7. Complete Metric Spaces and Function Spaces. 8. Baire Spaces and Dimension Theory. II. ALGEBRAIC TOPOLOGY. 9. The Fundamental Group. 10. Separation Theorems in the Plane. 11. The Seifert-van Kampen Theorem. 12. Classification of Covering Spaces. 13. Classification of Surfaces. Index.
526 _a500-599
_b514
650 _aTopology.
650 _aAlgebraic topology.
942 _2ddc
_cBK