000 | 01209nam a22002657a 4500 | ||
---|---|---|---|
999 |
_c63015 _d63015 |
||
003 | CITU | ||
005 | 20210430032225.0 | ||
008 | 210430b ||||| |||| 00| 0 eng d | ||
020 | _a9781292023625 | ||
040 | _aCITU LRAC | ||
082 | _a514 M925 2014 | ||
100 | 1 |
_aMunkres, James _eauthor |
|
245 | _aTopology | ||
264 | 1 |
_aEdinburgh: _bPearson, _c2014 |
|
300 |
_aII, 504 pages : _billustrations ; _c28 cm. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_aunmediated _bnc _2rdamedia |
||
338 |
_avolume _2rdacarrier |
||
500 | _aIncludes index. | ||
520 | _aI. GENERAL TOPOLOGY. 1. Set Theory and Logic. 2. Topological Spaces and Continuous Functions. 3. Connectedness and Compactness. 4. Countability and Separation Axioms. 5. The Tychonoff Theorem. 6. Metrization Theorems and Paracompactness. 7. Complete Metric Spaces and Function Spaces. 8. Baire Spaces and Dimension Theory. II. ALGEBRAIC TOPOLOGY. 9. The Fundamental Group. 10. Separation Theorems in the Plane. 11. The Seifert-van Kampen Theorem. 12. Classification of Covering Spaces. 13. Classification of Surfaces. Index. | ||
526 |
_a500-599 _b514 |
||
650 | _aTopology. | ||
650 | _aAlgebraic topology. | ||
942 |
_2ddc _cBK |