17.6.1 Comparison of IDEA StatiCa and AISC Design Strength Capacities 308
17.6.2 Comparison of IDEA StatiCa and ABAQUS Results 310
17.7 Summary 313
References 313
18 Top- and Seat-Angle with Double Web-Angle (TSADWA) Connections 315
18.1 Description 315
18.2 Experimental Study on TSADWA Connections 315
18.3 Code Design Calculations and Comparisons 317
18.3.1 Design Strength Capacity of Double Web-Angles 318
18.3.2 Design Strength Capacity of the Top- and Bottom Seat-Angles 322
18.3.3 ASD Design Strength Capacities of Test No. 14S1 324
18.4 IDEA StatiCa Analysis 324
18.4.1 Moment Capacity Analysis Using IDEA StatiCa 324
18.4.2 Moment-Rotation Analysis 327
18.5 ABAQUS Analysis 328
18.6 Results Comparison 331
18.6.1 Comparison of Connection Capacities from IDEA StatiCa Analysis, AISC Design Codes, and Experiments 331
18.6.2 Comparison of IDEA StatiCa and ABAQUS Results 332
18.7 Summary 335
References 336
19 Bolted Flange Plate (BFP) Moment Connections 337
19.1 Description 337
19.2 Experimental Study on BFP Moment Connections 337
19.3 Code Design Calculations and Comparisons 340
19.3.1 Design Strength Capacity of Single Web Plates 341
19.3.2 Design Strength Capacity of Flange Plates 343
19.3.3 Calculated ASD Design Strength Capacities of Test No. BFP 344
19.4 IDEA StatiCa Analysis 344
19.4.1 Moment Capacity Analysis Using IDEA StatiCa 344
19.4.2 Moment-Rotation Analysis 345
19.5 ABAQUS Analysis 349
19.6 Results Comparison 351
19.6.1 Comparison of IDEA StatiCa Analysis Data, AISC Design Strengths, and Test Data 351
19.6.2 Comparison of IDEA StatiCa and ABAQUS Results 353
19.7 Summary 355
References 356
20 Conclusion 357
References 358
Disclaimer 359
Terms and symbols 361
Index 363
Steel Connection Design by Inelastic Analysis covers the use of the finite element method in structural steel connection design. Verification with AISC 360 provisions is presented, focusing on the Component-Based Finite Element Method (CBFEM), a novel approach that provides the global behavior and verification of resistance for the design of structural steel connections. This method is essential for fast and practical design and evaluation of connections with different levels of geometry and complexity. Detailed modeling and verification examples with references to AISC and other relevant publications are included throughout the text, along with roughly 250 illustrations to aid in reader comprehension. Readers of this text will benefit from understanding at least the basics of structural design, ideally through civil, structural, or mechanical engineering programs of study.
About the Author Mark Denavit is an Associate Professor in the Department of Civil and Environmental Engineering at the University of Tennessee, Knoxville, TN, USA.
Ali Nassiri is an Assistant Professor in the Department of Integrated Systems Engineering at the Ohio State University, Columbus, OH, USA.
Mustafa Mahamid is a Research Associate Professor at the University of Illinois at Chicago, IL, USA & an Associate Research Fellow at the Technion, Israel Institute of Technology, Haifa, Israel.
Martin Vild is a Product Owner at IDEA StatiCa and an Assistant Professor in Institute of Metal and Timber Structures at Brno University of Technology, Czech Republic.
FrantiĊĦek Wald is a Professor in Department of Steel and Timber Structures at the Czech Technical University in Prague, Czech Republic.
Halil Sezen is a Professor of Structural Engineering in the Department of Civil, Environmental and Geodetic Engineering at the Ohio State University, Columbus, OH, USA.