Interfacial engineering in functional materials for dye-sensitized solar cells /
edited by Alagarsamy Pandikumar, Kandasamy Jothivenkatachalam, Karuppanapillai B. Bhojanaa.
- First edition.
- 1 online resource (xvi, 270 pages)
Includes bibliographical references and index.
Table of Contents List of Contributors xi
Preface xv
1 Dye-Sensitized Solar Cells: History, Components, Configuration, and Working Principle 1 S.N. Karthick, K.V. Hemalatha, Suresh Kannan Balasingam, F. Manik Clinton, S. Akshaya, and Hee-Je Kim
1.1 Introduction 1
1.2 History of Dye-sensitized Solar Cells 3
1.3 Components of DSSCs 4
1.3.1 Conductive Glass Substrate 4
1.3.2 Photoanode 4
1.3.3 Counter Electrode 4
1.3.4 Electrolytes 6
1.3.4.1 Types of Solvents Used in Electrolytes 6
1.3.4.2 Alternative Redox Mediators 7
1.3.5 Dyes 8
1.4 Configuration of DSSCs 8
1.4.1 Metal Substrates for Photoanode and Glass/TCO for Counter Electrode 8
1.4.2 Metal Substrates for Counter Electrode and Glass/TCO for Photoanode 10
1.4.3 Metal Substrate for Photoanode and Polymer Substrate for Counter Electrode 10
1.4.4 Polymer Substrates for Flexible DSSCs 10
1.4.5 Glass/TCO-Free Metal Substrates for Flexible DSSCs 11
1.4.6 Glass/TCO-Free Metal Wire Substrates for Flexible DSSCs 11
1.5 Working Principle of DSSCs 11
1.5.1 Electron Transfer Mechanism in DSSCs 14
1.5.2 Photoelectric Performance 14
Acknowledgments 15
References 15
2 Function of Photoanode: Charge Transfer Dynamics, Challenges, and Alternative Strategies 17 A. Dennyson Savariraj and R.V. Mangalaraja
2.1 Introduction 17
2.2 The General Composition of DSSC 18
2.3 Selection of Substrate for DSSCs 18
2.4 Photoanode 19
2.4.1 Coating Procedure 20
2.4.2 Significance of Using Mesoporous Structure 20
2.5 Sensitizer 20
2.6 Charge Transfer Mechanism 21
2.7 Interfaces 21
2.8 Significance of Dye/Metal Oxide Interface 22
2.9 Factors That Influence Efficiency in DSSC 23
2.9.1 Dye Aggregation 23
2.9.2 Effect of Metal Oxide on the Performance of Metal Oxide/Dye Interface 24
2.9.3 Role of Electronic Structure of Metal Oxides 25
2.10 Kinetics of Operation in DSSCs 26
2.11 Strategies to Improve the Photoanode Performance 28
2.11.1 TiCl4 Treatment 28
2.11.2 Composites 28
2.11.3 Light Scattering 29
2.11.4 Nanoarchitectures 29
2.11.5 Doping 30
2.11.6 Interfacial Engineering 30
2.12 Conclusion 30
Acknowledgments 31
References 31
3 Nanoarchitectures as Photoanodes 35 Hari Murthy
3.1 Introduction 35
3.2 DSSC Operation 36
3.3 Nanoarchitectures for Improved Device Performance of Photoanodes 39
3.3.1 TiO2 39
3.3.2 ZnO 51
3.3.3 SnO2 53
3.3.4 Nb2O5 55
3.3.5 Graphene 55
3.3.6 Other Photoanode Materials 56
3.4 Future Outlook and Challenges 65
3.5 Conclusion 66
References 66
4 Light Scattering Materials as Photoanodes 79 Rajkumar C and A. Arulraj
4.1 Introduction 79
4.2 Introduction to Light Scattering 79
4.3 Materials for Light Scattering in DSSCs 80
4.4 Early Theoretical Predictions of Light Scattering in DSSCs 82
4.5 Different Light Scattering Materials 85
4.5.1 Mixing of Large Particles into Small Particles 85
4.6.6.4 Carbon-Based Materials for Light Scattering 96
4.6.6.5 3D N-Doped TiO2 Microspheres Used as Scattering Layers 96
4.6.6.6 ZnO Hollow Spheres and Urchin-like TiO2 Microspheres 96
4.6.6.7 SnO2 as Light-Scattering Layer 97
4.6.7 Three-Layer Photoanode 97
4.6.8 Four-Layer Photoanode 97
4.6.9 Surface Plasmon Effect in DSSC 97
4.7 Conclusion 99
References 99
5 Function of Compact (Blocking) Layer in Photoanode 107 Su Pei Lim
5.1 Introduction 107
5.2 Titanium Dioxide (TiO2) and Titanium (Ti)-Based Material as a Compact Layer 107
5.3 Zinc Oxide (ZnO) as a Compact Layer 112
5.4 Less Common Metal Oxide as a Compact Layer 117
5.5 Conclusion 118
References 121
6 Function of TiCl4 Posttreatment in Photoanode 125 T.S. Senthil and C.R. Kalaiselvi
6.1 Introduction 125
6.2 Role of TiCl4 Posttreatment in Photo-Anode 126
6.3 Effect of Posttreatment of TiCl4 on Various Perspectives 126
6.3.1 TiO2 Morphology, Porosity, and Surface Area 126
6.3.2 Dye Adsorption and Photocurrent Generation 129
6.3.3 Electron Transport and Diffusion Coefficient 132
6.3.4 Recombination Losses at Short Circuit 134
6.3.5 Concentration and Dipping Time of TiCl4 135
6.4 Conclusion 136
References 137
7 Doped Semiconductor as Photoanode 139 K. S. Rajni and T. Raguram
7.1 Introduction 139
7.2 Photoanode 140
7.3 Characterization 141
7.4 Doped TiO2 Photoanodes 141
7.4.1 Alkali Earth Metals-doped TiO2 141
7.4.1.1 Lithium-doped TiO2 141
7.4.1.2 Magnesium-doped TiO2 143
7.4.1.3 Calcium-doped TiO2 143
7.4.2 Metalloids-doped TiO2 143
7.4.2.1 Boron-doped TiO2 145
7.4.2.2 Silicon-doped TiO2 145
7.4.2.3 Germanium-doped TiO2 145
7.4.2.4 Antimony-doped TiO2 146
7.4.3 Nonmetals-doped TiO2 146
7.4.3.1 Carbon-doped TiO2 146
7.4.3.2 Nitrogen-doped TiO2 147
7.4.3.3 Fluorine-doped TiO2 147
7.4.3.4 Sulfur-doped TiO2 147
7.4.3.5 Iodine-doped TiO2 148
7.4.4 Transition Metals-doped TiO2 148
7.4.4.1 Scandium-doped TiO2 148
7.4.4.2 Vanadium, Niobium, and Tantalum-doped TiO2 148
7.4.4.3 Chromium-doped TiO2 148
7.4.4.4 Manganese and Cobalt-doped TiO2 150
7.4.4.5 Iron-doped TiO2 150
7.4.4.6 Nickel-doped TiO2 151
7.4.4.7 Copper-doped TiO2 152
7.4.4.8 Zinc-doped TiO2 153
7.4.4.9 Yttrium-doped TiO2 153
7.4.4.10 Zirconium-doped TiO2 154
7.4.4.11 Molybdenum-doped TiO2 154
7.4.4.12 Silver-doped TiO2 155
7.4.5 Post-Transition Metals 155
7.4.5.1 Aluminum-doped TiO2 155
7.4.5.2 Gallium-doped TiO2 155
7.4.5.3 Indium-doped TiO2 155
7.4.5.4 Tin-doped TiO2 156
7.4.6 Lanthanides-doped TiO2 156
7.4.6.1 Lanthanum-doped TiO2 156
7.4.6.2 Cerium-doped TiO2 156
7.4.6.3 Neodymium-doped TiO2 157
7.4.6.4 Samarium-doped TiO2 157
7.4.6.5 Europium-doped TiO2 157
7.4.7 Co-doped TiO2 158
7.4.8 Tri-doped TiO2 158
7.5 Conclusion 158
References 159
8 Binary Semiconductor Metal Oxide as Photoanodes 163 S.S. Kanmani, I. John Peter, A. Muthu Kumar, P. Nithiananthi, C. Raja Mohan, and K. Ramachandran
8.1 Why Metal Oxide Semiconductors? 163
8.2 Development of MOS-Based DSSC 164
8.2.1 TiO2/ZnO Core/Shell Configuration 165
8.2.2 Preparation of TiO2/ZnO Core/Shell Nanomaterials 165
8.2.3 TiO2/ZnO Core/Shell Nanomaterials 165
8.2.4 DSSC Performance of TiO2/ZnO Core/Shell Configuration 167
8.3 Importance of Heterostructures 170
8.4 I–V Characteristics 171
8.5 Matching of Bandgaps 171
8.6 Conclusion 189
References 189
9 Plasmonic Nanocomposite as Photoanode 193 Su Pei Lim
9.1 Introduction 193
9.2 Plasmonic Nanocomposite Modified TiO2 as Photoanode 193
9.3 Plasmonic Nanocomposite Modified ZnO as Photoanode 197
9.4 Plasmonic Nanocomposite Modified with Less Common Metal Oxide as Photoanode 203
9.5 Conclusion 206
References 206
10 Carbon Nanotubes-Based Nanocomposite as Photoanode 213 Giovana R. Cagnani, Nirav Joshi, and Flavio M. Shimizu
10.1 Introduction 213
10.2 Recent Advances on DSSC Photoanodes 215
10.3 Structure and Properties of Carbon Nanotubes 216
10.4 CNT-Based Photoanode Material 218
10.5 Effect of the Morphology and Interface of the CNT Photoanodes on the Efficiency of the DSSC 221
10.6 Summary and Future Prospect 223
Acknowledgment 223
References 223
11 Graphene-Based Nanocomposite as Photoanode 231 Subhendu K. Panda, G. Murugadoss, and R. Thangamuthu
11.1 Introduction 231
11.2 Graphene–TiO2 Nanocomposite for Photoanode 232
11.3 Conclusion and Remarks 241
References 242
12 Graphitic Carbon Nitride Based Nanocomposites as Photoanodes 247 T.S. Shyju, S. Anandhi, P. Vengatesh, C. Karthik Kumar, and M. Paulraj
12.1 Introduction 247
12.2 Importance of Graphitic Carbon Nitride 248
12.3 Photoanodes for DSSC 250
12.4 Preparation of Graphitic Carbon Nitride 252
12.4.1 Bulk Graphitic Carbon Nitride 253
12.4.2 Mesoporous Graphitic Carbon Nitrides 253
12.4.3 Doping in Graphitic Carbon Nitride 254
12.4.4 Ag Deposited g-C3N4 254
12.4.5 Chemical Doping 254
12.5 Operation Principles of DSSC 255
12.5.1 Nanostructured Graphitic Carbon Nitride in DSSC 257
12.6 Graphitic Carbon Nitride in Polymer Films Solar Cell 259
12.7 Preparation of Carbon Nitride Counter Electrode 259
12.8 Quantum Dot Graphitic Carbon Nitride 260
12.9 Porous Graphitic Carbon Nitride 260
12.10 Summary 260
Acknowledgment 261
References 261
Index 265
"Solar energy has paved the way as an alternative to fossil fuels for present and future energy demands. Dye-sensitized solar cells (DSSC) are one of the most promising techniques to harvest solar energy and convert it into electrical energy because of their ease of production, low cost, flexibility, relatively high conversion efficiency, and low toxicity to the environment. DSSCs consist of components such as electrolytes, dyes, counter electrodes, and photoanodes. Among these, the photoanode plays a vital role and serves as the support for dye molecules and transport photo-excited electrons"--
About the Author ALAGARSAMY PANDIKUMAR, PHD, is Scientist at CSIR-Central Electrochemical Research Institute, Karaikudi, India. His research includes development of novel materials involving graphene, graphitic carbon nitrides, and transition metal chalcogenides in combination with metals, metal oxides, polymers and carbon nanotubes for applications in photocatalysis, photoelectrocatalysis, dye-sensitized solar cells and electrochemical sensor.
KANDASAMY JOTHIVENKATACHALAM, PHD, is Professor of Chemistry at Anna University, BIT campus, Tiruchirappalli, India. His research interests include photocatalysis, photoelectrochemistry, photoelectrocatalysis, and chemically modified electrodes.
KARUPPANAPILLAI B. BHOJANAA, MSc, is DST-INSPIRE Research Fellow at Functional Materials Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India.