Principles of inorganic materials design /
John N. Lalena, U.S. Department of Energy, David A. Cleary, Gonzaga University, Olivier B. M. Hardouin Duparc, École Polytechnique.
- Third edition.
- 1 online resource (xxiii, 720 pages)
Includes bibliographical references and index.
TABLE OF CONTENTS Foreword to Second Edition xiii
Foreword to First Edition xv
Preface to Third Edition xix
Preface to Second Edition xx
Preface to First Edition xxi
Acronyms xxiii
1 Crystallographic Considerations 1
1.1 Degrees of Crystallinity 1
1.1.1 Monocrystalline Solids 2
1.1.2 Quasicrystalline Solids 3
1.1.3 Polycrystalline Solids 4
1.1.4 Semicrystalline Solids 5
1.1.5 Amorphous Solids 8
1.2 Basic Crystallography 8
1.2.1 Crystal Geometry 8
1.2.1.1 Types of Crystallographic Symmetry 12
1.2.1.2 Space Group Symmetry 17
1.2.1.3 Lattice Planes and Directions 27
1.3 Single-Crystal Morphology and Its Relationship to Lattice Symmetry 32
1.4 Twinned Crystals, Grain Boundaries, and Bicrystallography 37
1.4.1 Twinned Crystals and Twinning 37
1.4.2 Crystallographic Orientation Relationships in Bicrystals 39
1.4.2.1 The Coincidence Site Lattice 39
1.4.2.2 Equivalent Axis–Angle Pairs 44
1.5 Amorphous Solids and Glasses 46
1.5.1 Oxide Glasses 49
1.5.2 Metallic Glasses and Metal–Organic Framework Glasses 51
1.5.3 Aerogels 53
Practice Problems 53
References 55
2 Microstructural Considerations 57
2.1 Materials Length Scales 57
2.1.1 Experimental Resolution of Material Features 61
2.2 Grain Boundaries in Polycrystalline Materials 63
2.2.1 Grain Boundary Orientations 63
2.2.2 Dislocation Model of Low Angle Grain Boundaries 65
2.2.3 Grain Boundary Energy 66
2.2.4 Special Types of “Low-Energy” Boundaries 68
2.2.5 Grain Boundary Dynamics 69
2.2.6 Representing Orientation Distributions in Polycrystalline Aggregates 70
2.3 Materials Processing and Microstructure 72
2.3.1 Conventional Solidification 72
2.3.1.1 Grain Homogeneity 74
2.3.1.2 Grain Morphology 76
2.3.1.3 Zone Melting Techniques 78
2.3.2 Deformation Processing 79
2.3.3 Consolidation Processing 79
2.3.4 Thin-Film Formation 80
2.3.4.1 Epitaxy 81
2.3.4.2 Polycrystalline PVD Thin Films 81
2.3.4.3 Polycrystalline CVD Thin Films 83
2.4 Microstructure and Materials Properties 83
2.4.1 Mechanical Properties 83
2.4.2 Transport Properties 86
2.4.3 Magnetic and Dielectric Properties 90
2.4.4 Chemical Properties 92
2.5 Microstructure Control and Design 93
Practice Problems 96
References 96
3 Crystal Structures and Binding Forces 99
3.1 Structure Description Methods 99
3.1.1 Close Packing 99
3.1.2 Polyhedra 103
3.1.3 The (Primitive) Unit Cell 103
3.1.4 Space Groups and Wyckoff Positions 104
3.1.5 Strukturbericht Symbols 104
3.1.6 Pearson Symbols 105
3.2 Cohesive Forces in Solids 106
3.2.1 Ionic Bonding 106
3.2.2 Covalent Bonding 108
3.2.3 Dative Bonds 110
3.2.4 Metallic Bonding 111
3.2.5 Atoms and Bonds as Electron Charge Density 112
3.3 Chemical Potential Energy 113
3.3.1 Lattice Energy for Ionic Crystals 114
3.3.2 The Born–Haber Cycle 119
3.3.3 Goldschmidt’s Rules and Pauling’s Rules 120
3.3.4 Total Energy 122
3.3.5 Electronic Origin of Coordination Polyhedra in Covalent Crystals 124
3.4 Common Structure Types 127
3.4.1 Iono-covalent Solids 128
3.4.1.1 AX Compounds 128
3.4.1.2 AX2 Compounds 130
3.4.1.3 AX6 Compounds 132
3.4.1.4 ABX2 Compounds 132
3.4.1.5 AB2X4 Compounds (Spinel and Olivine Structures) 134
3.4.1.6 ABX3 Compounds (Perovskite and Related Phases) 135
14 Introduction to Computational Materials Science 589
14.1 A Short History of Computational Materials Science 590
14.1.1 1945–1965: The Dawn of Computational Materials Science 591
14.1.2 1965–2000: Steady Progress Through Continued Advances in Hardware and Software 595
14.1.3 2000–Present: High-Performance and Cloud Computing 598
14.2 Spatial and Temporal Scales, Computational Expense, and Reliability of Solid-State Calculations 600
14.3 Illustrative Examples 604
14.3.1 Exploration of the Local Atomic Structure in Multi-principal Element Alloys by Quantum Molecular Dynamics 604
14.3.2 Magnetic Properties of a Series of Double Perovskite Oxides A2BCO6 (A = Sr, Ca; B = Cr; C = Mo, Re, W) by Monte Carlo Simulations in the Framework of the Ising Model 606
14.3.3 Crystal Plasticity Finite Element Method (CPFEM) Analysis for Modeling Plasticity in Polycrystalline Alloys 613
References 617
15 Case Study I: TiO2 619
15.1 Crystallography 619
15.2 Microstructure 623
15.3 Bonding 626
15.4 Electronic Structure 627
15.5 Transport 628
15.6 Metal–Insulator Transitions 632
15.7 Magnetic and Dielectric Properties 632
15.8 Optical Properties 634
15.9 Mechanical Properties 635
15.10 Phase Equilibria 636
15.11 Synthesis 638
15.12 Nanomaterial 639
Practice Questions 639
References 640
16 Case Study II: GaN 643
16.1 Crystallography 643
16.2 Microstructure 646
16.3 Bonding 647
16.4 Electronic Structure 647
16.5 Transport 648
16.6 Metal–Insulator Transitions 650
16.7 Magnetic and Dielectric Properties 652
16.8 Optical Properties 652
16.9 Mechanical Properties 653
16.10 Phase Equilibria 654
16.11 Synthesis 654
16.12 Nanomaterial 656
Practice Questions 657
References 658
Appendix A: List of the 230 Space Groups 659
Appendix B: The 32 Crystal Systems and the 47 Possible Forms 665
Appendix C: Principles of Tensors 667
Appendix D: Solutions to Practice Problems 679
Index 683
"With its proven concept, this textbook introduces topics relevant to the design of new materials. It covers a wide range of topics in the area of inorganic materials structure/property relations and materials behavior across length scales. New to this third edition are chapters specifically on computational materials science, compound semiconductors, intermetallic compounds, and covalent compounds. Also, there are expanded discussions on several topics, including microstructural considerations, transport properties, magnetic and dielectric properties, and nanomaterials. This textbook therefore provides a state-of-the-art introduction to inorganic materials design for advanced students of materials science, chemistry and engineering"--