5G technology : 3GPP new radio / edited by Harri Holma, Nokia Siemens Networks, Finland, Antti Toskala, Nokia Siemens Networks, Finland, Takehiro Nakamura, 5G Laboratories, NTT DOCOMO, Inc., Japan.

Contributor(s): Holma, Harri, 1970- [editor.] | Nakamura, Takehiro, 1965- [editor.] | Toskala, Antti [editor.]
Language: English Publisher: Hoboken, NJ : John Wiley & Sons, Inc., 2020Edition: First editionDescription: 1 online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9781119236313; 1119236290; 1119236304; 9781119236283; 9781119236290; 9781119236306Subject(s): 5G mobile communication systemsGenre/Form: Electronic books.DDC classification: 621.3845/6 LOC classification: TK5103.25Online resources: Full text is available at Wiley Online Library Click here to view
Contents:
Table of Contents List of Contributors xvii Foreword xix Preface xxi Acknowledgment xxiii 1 Introduction 1 Harri Holma, Antti Toskala, Takehiro Nakamura, and Tommi Uitto 1.1 Introduction 1 1.2 5G Targets 3 1.3 5G Technology Components 3 1.4 5G Spectrum 4 1.5 5G Capabilities 5 1.6 5G Capacity Boost 7 1.7 5G Standardization and Schedule 8 1.8 5G Use Cases 9 1.9 Evolution Path from LTE to 5G 10 1.10 Mobile Data Traffic Growth 10 1.11 Summary 11 Reference 11 2 5G Targets and Standardization 13 Hiroyuki Atarashi, Mikio Iwamura, Satoshi Nagata, Takehiro Nakamura, and Antti Toskala 2.1 Introduction 13 2.2 ITU 13 2.2.1 IMT Vision for 2020 and Beyond 14 2.2.2 Standardization of IMT-2020 Radio Interface Technologies 15 2.3 NGMN 17 2.3.1 NGMN 5G Use Cases 18 2.3.2 NGMN 5G Requirements 19 2.3.3 NGMN 5G Architecture Design Principles 20 2.3.4 Spectrum, Intellectual Property Rights (IPR), and Further Recommendations by NGMN 21 2.4 3GPP Schedule and Phasing 22 References 25 3 Technology Components 27 Harri Holma 3.1 Introduction 27 3.2 Spectrum Utilization 27 3.2.1 Frequency Bands 27 3.2.2 Bandwidth Options 29 3.2.3 Spectrum Occupancy 29 3.2.4 Control Channel Flexibility 30 3.2.5 Dynamic Spectrum Sharing 31 3.3 Beamforming 31 3.4 Flexible Physical Layer and Protocols 33 3.4.1 Flexible Numerology 33 3.4.2 Short Transmission Time and Mini-slot 34 3.4.3 Self-Contained Subframe 35 3.4.4 Asynchronous HARQ 36 3.4.5 Lean Carrier 37 3.4.6 Adaptive Reference Signals 38 3.4.7 Adaptive UE Specific Bandwidth 38 3.4.8 Distributed MIMO 39 3.4.9 Waveforms 39 3.4.10 Channel Coding 41 3.4.11 Pipeline Processing and Front-Loaded Reference Signals 41 3.4.12 Connected Inactive State 41 3.4.13 Grant-Free Access 43 3.4.14 Cell Radius of 300 km 43 3.5 Network Slicing 44 3.6 Dual Connectivity with LTE 44 3.7 Radio Cloud and Edge Computing 46 3.8 Summary 47 Reference 47 4 Spectrum 49 Harri Holma and Takehiro Nakamura 4.1 Introduction 49 4.2 Millimeter Wave Spectrum Above 20 GHz 52 4.3 Mid-Band Spectrum at 3.3–5.0 GHz and at 2.6 GHz 55 4.4 Low-Band Spectrum Below 3 GHz 58 4.5 Unlicensed Band 59 4.6 Shared Band 62 4.7 3GPP Frequency Variants 64 4.8 Summary 64 References 64 5 5G Architecture 67 Antti Toskala and Miikka Poikselkä 5.1 Introduction 67 5.2 5G Architecture Options 67 5.3 5G Core Network Architecture 70 5.3.1 Access and Mobility Management Function 72 5.3.2 Session Management Function 73 5.3.3 User Plane Function 73 5.3.4 Data Storage Architecture 73 5.3.5 Policy Control Function 73 5.3.6 Network Exposure Function 74 5.3.7 Network Repository Function 74 5.3.8 Network Slice Selection 74 5.3.9 Non-3GPP Interworking Function 74 5.3.10 Auxiliary 5G Core Functions 74 5.4 5G RAN Architecture 75 5.4.1 NG-Interface 78 5.4.2 Xn-Interface 79 5.4.3 E1-Interface 80 5.4.4 F1-Interface 80 5.5 Network Slicing 81 5.5.1 Interworking with LTE 82 5.6 Summary 85 References 86 6 5G Physical Layer 87 Mihai Enescu, Keeth Jayasinghe, Karri Ranta-Aho, Karol Schober, and Antti Toskala 6.1 Introduction 87 6.2 5G Multiple Access Principle 88 6.3 Physical Channels and Signals 92 6.4 Basic Structures for 5G Frame Structure 95 6.5 5G Channel Structures and Beamforming Basics 98 6.6 Random Access 100 6.7 Downlink User Data Transmission 101 6.8 Uplink User Data Transmission 103 6.9 Uplink Signaling Transmission 105 6.10 Downlink Signaling Transmission 108 6.11 Physical Layer Procedures 111 6.11.1 HARQ Procedure 112 6.11.2 Uplink Power Control 112 6.11.3 Timing Advance 113 6.12 5G MIMO and Beamforming Operation 113 6.12.1 Downlink MIMO Transmission Schemes 113 6.12.2 Beam Management Framework 114 6.12.2.1 Initial Beam Acquisition 116 6.12.2.2 Beam Measurement and Reporting 116 6.12.2.3 Beam Indication: QCL and Transmission Configuration Indicator (TCI) 117 6.12.2.4 Beam Recovery 120 6.12.3 CSI Framework 122 6.12.3.1 Reporting Settings 122 6.12.3.2 Resource Settings 122 6.12.3.3 Reporting Configurations 123 6.12.3.4 Report Quantity Configurations 125 6.12.4 CSI Components 126 6.12.4.1 Channel Quality Indicator (CQI) 126 6.12.4.2 Precoding Matrix Indicator (PMI) 126 6.12.4.3 Resource Indicators: CRI, SSBRI, RI, LI 132 6.12.5 Uplink MIMO Transmission Schemes 132 6.12.5.1 Codebook-Based Uplink Transmission 132 6.12.5.2 Non-Codebook-Based Uplink Transmission 133 6.13 Channel Coding with 5G 133 6.13.1 Channel Coding for Data Channel 134 6.13.1.1 5G LDPC Code Design 135 6.13.1.2 5G LDPC Coding Chain 137 6.13.2 Channel Coding for Control Channels 140 6.13.2.1 5G Polar Coding Design 140 6.14 Dual Connectivity 142 6.15 5G Data Rates 144 6.16 Physical Layer Measurements 145 6.17 UE Capability 146 6.18 Summary 147 References 148 7 5G Radio Protocols 149 Tero Henttonen, Jarkko Koskela, Benoist Sébire, and Antti Toskala 7.1 Introduction 149 7.2 5G Radio Protocol Layers 150 7.3 SDAP 151 7.3.1 Overview 151 7.3.2 QoS Flow Remapping 153 7.3.3 MDBV 155 7.3.4 Header 155 7.4 PDCP 156 7.4.1 Overview 156 7.4.2 Reordering 156 7.4.3 Security 157 7.4.4 Header Compression 157 7.4.5 Duplicates and Status Reports 158 7.4.6 Duplication 159 7.5 RLC 160 7.5.1 Overview 160 7.5.2 Segmentation 160 7.5.3 Error Correction 161 7.5.4 Transmissions Modes 161 7.5.5 Duplication 161 7.6 MAC Layer 162 7.6.1 Overview 162 7.6.2 Logical Channels 162 7.6.3 Random Access Procedure 163 7.6.4 HARQ and Transmissions 163 7.6.5 Scheduling Request 164 7.6.6 Logical Channel Prioritization and Multiplexing 164 7.6.7 BSR 165 7.6.8 PHR 166 7.6.9 DRX 166 7.6.10 Bandwidth Parts 166 7.6.11 BFD and Recovery 167 7.6.12 Other Functions 167 7.6.13 MAC PDU Structure 168 7.7 The RRC Protocol 168 7.7.1 Overview 168 7.7.2 Broadcast of System Information 171 7.7.3 Paging 174 7.7.4 Overview of Idle and Inactive Mode Mobility 175 7.7.5 RRC Connection Control and Mobility 179 7.7.6 RRC Support of Upper Layers 183 7.7.7 Different Versions of Release 15 RRC Specifications 184 7.8 Radio Protocols in RAN Architecture 185 7.9 Summary 185 References 186 8 Deployment Aspects 187 Harri Holma, Riku Luostari, Jussi Reunanen, and Puripong Thepchatri 8.1 Introduction 187 8.2 Spectrum Resources 188 8.2.1 Spectrum Refarming and Dynamic Spectrum Sharing 188 8.3 Network Density 190 8.4 Mobile Data Traffic Growth 190 8.4.1 Mobile Data Volume 190 8.4.2 Traffic Asymmetry 191 8.5 Base Station Site Solutions 192 8.6 Electromagnetic Field (EMF) Considerations 194 8.7 Network Synchronization and Coordination Requirements 195 8.7.1 Main Interference Scenarios in TDD System 196 8.7.2 TDD Frame Configuration Options 197 8.7.3 Cell Size and Random Access Channel 197 8.7.4 Guard Period and Safety Zone 198 8.7.5 Intra-Frequency Operation 199 8.7.6 Inter-Operator Synchronization 201 8.7.7 Synchronization Requirements in 3GPP 202 8.7.8 Synchronization from Global Navigation Satellite System (GNSS) 204 8.7.9 Synchronization with ToP 205 8.7.10 Timing Alignment Between Vendors 208 8.8 5G Overlay with Another Vendor LTE 209 8.9 Summary 210 References 211 9 Transport 213 Esa Markus Metsälä and Juha Salmelin 9.1 5G Transport Network 213 9.1.1 5G Transport 213 9.1.2 Types of 5G Transport 214 9.1.3 Own versus Leased Transport 215 9.1.4 Common Transport 216 9.1.5 Mobile Backhaul Tiers 216 9.1.6 Logical and Physical Transport Topology 218 9.1.7 Standards Viewpoint 218 9.2 Capacity and Latency 219 9.2.1 Transport Capacity Upgrades 219 9.2.2 Access Link 220 9.2.3 Distribution Tier 221 9.2.4 Backhaul and High Layer Fronthaul Capacity 221 9.2.5 Low Layer Fronthaul Capacity 222 9.2.6 Latency 223 9.2.7 QoS Marking 224 9.3 Technologies 225 9.3.1 Client Ports 225 9.3.2 Networking Technologies Overview 226 9.4 Fronthaul and Backhaul Interfaces 228 9.4.1 Low Layer Fronthaul 228 9.4.2 NG Interface 230 9.4.3 Xn/X2 Interfaces 231 9.4.4 F1 Interface 231 9.5 Specific Topics 232 9.5.1 Network Slicing in Transport 232 9.5.2 URLLC Transport 233 9.5.3 IAB (Integrated Access and Backhaul) 234 9.5.4 NTNs (Non-Terrestrial Networks) 234 9.5.5 Time-Sensitive Networks 235 References 236 10 5G Performance 239 Harri Holma, Suresh Kalyanasundaram, and Venkat Venkatesan 10.1 Introduction 239 10.2 Peak Data Rates 241 10.3 Practical Data Rates 243 10.3.1 User Data Rates at 2.5–5.0 GHz 243 10.3.2 User Data Rates at 28 GHz 244 10.3.3 User Data Rates with Fixed Wireless Access at 28 GHz 245 10.4 Latency 247 10.4.1 User Plane Latency 247 10.4.2 Low Latency Architecture 253 10.4.3 Control Plane Latency 255 10.5 Link Budgets 257 10.5.1 Link Budget for Sub-6-GHz TDD 257 10.5.2 Link Budget for Low Band FDD 260 10.5.3 Link Budget for Millimeter Waves 260 10.6 Coverage for Sub-6-GHz Band 262 10.6.1 Signal Propagation at 3.5 GHz Band 262 10.6.2 Beamforming Antenna Gain 262 10.6.3 Uplink Coverage Solutions 264 10.7 Massive MIMO and Beamforming Algorithms 269 10.7.1 Antenna Configuration 269 10.7.2 Beamforming Algorithms 271 10.7.3 Radio Network Architecture and Functionality Split 275 10.7.4 RF Solution Benchmarking 277 10.7.5 Distributed MIMO 278 10.8 Packet Scheduling Algorithms 280 10.8.1 Low Latency Scheduling 280 10.8.2 Mini-Slot Scheduling 285 10.9 Spectral Efficiency and Capacity 286 10.9.1 Downlink Spectral Efficiency in 5G Compared to LTE 286 10.9.2 Downlink Spectral Efficiency with Different Antenna Configurations 288 10.9.3 Uplink Spectral Efficiency 288 10.9.4 IMT-2020 Performance Evaluation 289 10.9.5 5G Capacity at Mid-Band 291 10.10 Network Energy Efficiency 291 10.11 Traffic and Device Density 294 10.12 Ultra-Reliability for Mission-Critical Communication 296 10.12.1 Antenna Diversity 296 10.12.2 Macro-Diversity and Multi-Connectivity 296 10.12.3 Interference Cancelation 297 10.12.4 HARQ (Hybrid Automatic Repeat Request) for High Reliability 297 10.13 Mobility and High-Speed Trains 299 10.14 Summary 302 References 302 11 Measurements 305 Yoshihisa Kishiyama and Tetsuro Imai 11.1 Introduction 305 11.2 Propagation Measurements Above 6 GHz 306 11.2.1 Fundamental Experiments 306 11.2.2 Urban Microcellular Scenario 312 11.2.3 Indoor Hotspot Scenario 315 11.2.4 Outdoor-to-Indoor Scenario 319 11.3 Field Experiments with Sub-6-GHz 5G Radio 326 11.3.1 Experimental System with Higher Rank MIMO 326 11.3.2 Field Experiments 328 11.4 Field Experiments of Millimeter Wave 5G Radio 332 11.4.1 Experimental System with Beamforming and Beam Tracking 332 11.4.2 Field Experiments 336 11.5 Summary 344 References 345 12 5G RF Design Challenges 349 Petri Vasenkari, Dominique Brunel, and Laurent Noël 12.1 Introduction 349 12.2 Impact of New Physical Layer on RF Performance 350 12.2.1 New Uplink Waveforms 350 12.2.2 New Frequency Range Definition 352 12.2.3 Impact of NSA Operation on the 5G UE RF Front-End 354 12.2.4 New Features Impacting UE RF Front-End 358 12.2.5 RAN4 Technical Specification (TS) Survival Guide 361 12.3 5G Standalone Performance Aspects in Frequency Range 1 363 12.3.1 New Channel Bandwidths and Improved SU 363 12.3.2 Impact of Large Channel Bandwidths on PA Efficiency Enhancement Techniques 365 12.3.3 FR1 Frequency Bands 366 12.3.4 Transmitter Chain Aspects 369 12.4 5G Standalone Performance Aspects in mmWave Frequency Range 2 373 12.4.1 Channel Bandwidths and SU 373 12.4.2 FR2 Bands 373 12.4.3 FR2 Key RF Parameters 374 12.4.4 Transmitter Aspects 376 12.4.5 Multi-Band Support and Carrier Aggregation 378 12.4.6 OTA Conformance Test Challenges 378 12.5 Dual Uplink Performance Challenges for NSA Operation 381 12.5.1 From Single UL to Dual UL Operation 381 12.5.2 EN-DC: Explosion of LTE-CA Combinations as Baseline to 5G 383 12.5.3 FR1 UE Types and Power Sharing in EN-DC 383 12.5.4 Dual Uplink Challenges for EN-DC Operation in FR1 383 12.5.5 Dual Uplink Challenges for EN-DC and NN-DC Operation in FR2 391 12.6 Examples of UE Implementation Challenges 392 12.6.1 More Antennas, More Bands to Multiplex, and More Concurrency 392 12.6.2 FR2 Antenna Integration and Smartphone Design 395 12.7 Summary 396 References 397 13 5G Modem Design Challenges 399 YihShen Chen, Jiann-Ching Guey, Chienhwa Hwang, PeiKai Liao, Guillaume Sébire, Weide Wu, and Weidong Yang 13.1 Introduction 399 13.2 High Data Rate, System Flexibility, and Computational Complexity 401 13.2.1 Channel Coding Aspects Versus UE Complexity 401 13.2.2 MIMO and Network Flexibility Versus UE Complexity 404 13.3 Low Latency, Flexible Timing, and Modem Control Flow Complexity 406 13.3.1 Low Latency Aspects Versus Modem Processing Capability 407 13.3.2 System Flexibility Versus Modem Control Timing 411 13.4 Multi-RAT Coexistence and Modem Architecture 413 13.4.1 Dual Connectivity and Modem Architecture 414 13.4.2 Impact of LTE/NR Coexistence on Modem Design 416 13.4.3 Uplink Transmission Design for Minimizing Intermodulation Effect 418 13.5 Wider Bandwidth Operation and Modem Power Consumption 419 13.5.1 Modem Power Consumption in Daily Use 419 13.5.2 Reducing Modem Power Consumption by Bandwidth Adaptation 422 13.5.3 Impacts on Modem Design 426 13.6 Summary 428 References 429 14 Internet of Things Optimization 431 Harri Holma, Rapeepat Ratasuk, and Mads Lauridsen 14.1 Introduction 431 14.2 IoT Optimization in LTE Radio 433 14.3 LTE-M 436 14.4 Narrowband-IoT 439 14.5 IoT Optimization in LTE Core Network 442 14.6 Coverage 443 14.7 Delay and Capacity 444 14.8 Power Saving Features 446 14.9 NB-IoT Power Consumption Measurements 448 14.10 IoT Solution Benchmarking 449 14.11 IoT Optimizations in 5G 451 14.12 Summary 458 References 459 15 5G Phase 2 and Beyond 461 Antti Toskala 15.1 Introduction 461 15.2 3GPP Release 16 Timing and Key Themes 461 15.2.1 5G Unlicensed (5G-U) 462 15.2.2 Industrial IoT and URLLC Enhancements 464 15.2.3 Toward Dynamic TDD 466 15.2.4 Integrated Access and Backhaul 467 15.2.5 Mobility Enhancements 469 15.2.6 MIMO Enhancements 470 15.2.7 Multi-Radio Dual Connectivity Enhancements 470 15.2.8 Two-Step RACH 471 15.2.9 UE Power Consumption Reduction 471 15.2.10 LightweightMobile Broadband with NR-Light 472 15.2.11 5G V2X 473 15.2.12 New 5G Core Features in Release 16 474 15.3 Summary and Outlook for Release 17 475 References 476 16 LTE-Advanced Evolution 477 Harri Holma and Timo Lunttila 16.1 Introduction 477 16.2 Overview of LTE Evolution 478 16.3 LTE-Advanced Pro Technologies 481 16.3.1 Multi-Gbps Data Rates with Carrier Aggregation Evolution 481 16.3.2 Utilization of 5 GHz Unlicensed Band 482 16.3.3 Enhanced Spectral Efficiency with 3D Beamforming and Interference Cancelation 485 16.3.4 Extreme Local Capacity with Ultra-Dense Network 487 16.3.5 Millisecond Latency with Shorter Transmission Time Interval 487 16.3.6 IoT Optimization 490 16.3.7 D2D Communications 490 16.3.8 Public Safety 492 16.4 5G and LTE Benchmarking 494 16.4.1 Peak Data Rate 495 16.4.2 Cell Edge Data Rate 495 16.4.3 Spectral Efficiency 496 16.4.4 Mobility 496 16.4.5 Traffic Density 497 16.4.6 Device Density 497 16.5 Summary 498 References 499 Index 501
Summary: "Long Term Evolution (LTE) networks were launched commercially 2009 and the technology turned out to be hugely successful for boosting mobile broadband capabilities. Global mobile data traffic has grown by a factor of 10 during the last 5 years. LTE has enabled large number of new applications in smartphones and has brought high speed internet access to hundreds of millions of people that never had internet access earlier. 5G targets are set far beyond LTE in terms of technical capabilities and potential use cases. 5G is designed to provide ultra reliable low latency communication which opens completely new application areas for enterprise communication, like remote control, or for consumer communication like esports and cloud gaming. 5G will also boost mobile broadband performance to data rates beyond 10 Gbps. Those impressive targets require new solutions for the 5G mobile networks including new spectrum options, new antenna structures, new physical layer and protocols designs and new network architectures. Deep understanding of the underlying 5G technology allows to take full benefit of new capabilities. This book describes details of 5G specifications and practical deployment aspects. We hope you enjoy reading the book!"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Home library Call number Status Date due Barcode Item holds
EBOOK EBOOK COLLEGE LIBRARY
COLLEGE LIBRARY
621.38456 F5863 2019 (Browse shelf) Available CL-51238
Total holds: 0

Includes bibliographical references and index.

Table of Contents
List of Contributors xvii

Foreword xix

Preface xxi

Acknowledgment xxiii

1 Introduction 1
Harri Holma, Antti Toskala, Takehiro Nakamura, and Tommi Uitto

1.1 Introduction 1

1.2 5G Targets 3

1.3 5G Technology Components 3

1.4 5G Spectrum 4

1.5 5G Capabilities 5

1.6 5G Capacity Boost 7

1.7 5G Standardization and Schedule 8

1.8 5G Use Cases 9

1.9 Evolution Path from LTE to 5G 10

1.10 Mobile Data Traffic Growth 10

1.11 Summary 11

Reference 11

2 5G Targets and Standardization 13
Hiroyuki Atarashi, Mikio Iwamura, Satoshi Nagata, Takehiro Nakamura, and Antti Toskala

2.1 Introduction 13

2.2 ITU 13

2.2.1 IMT Vision for 2020 and Beyond 14

2.2.2 Standardization of IMT-2020 Radio Interface Technologies 15

2.3 NGMN 17

2.3.1 NGMN 5G Use Cases 18

2.3.2 NGMN 5G Requirements 19

2.3.3 NGMN 5G Architecture Design Principles 20

2.3.4 Spectrum, Intellectual Property Rights (IPR), and Further Recommendations by NGMN 21

2.4 3GPP Schedule and Phasing 22

References 25

3 Technology Components 27
Harri Holma

3.1 Introduction 27

3.2 Spectrum Utilization 27

3.2.1 Frequency Bands 27

3.2.2 Bandwidth Options 29

3.2.3 Spectrum Occupancy 29

3.2.4 Control Channel Flexibility 30

3.2.5 Dynamic Spectrum Sharing 31

3.3 Beamforming 31

3.4 Flexible Physical Layer and Protocols 33

3.4.1 Flexible Numerology 33

3.4.2 Short Transmission Time and Mini-slot 34

3.4.3 Self-Contained Subframe 35

3.4.4 Asynchronous HARQ 36

3.4.5 Lean Carrier 37

3.4.6 Adaptive Reference Signals 38

3.4.7 Adaptive UE Specific Bandwidth 38

3.4.8 Distributed MIMO 39

3.4.9 Waveforms 39

3.4.10 Channel Coding 41

3.4.11 Pipeline Processing and Front-Loaded Reference Signals 41

3.4.12 Connected Inactive State 41

3.4.13 Grant-Free Access 43

3.4.14 Cell Radius of 300 km 43

3.5 Network Slicing 44

3.6 Dual Connectivity with LTE 44

3.7 Radio Cloud and Edge Computing 46

3.8 Summary 47

Reference 47

4 Spectrum 49
Harri Holma and Takehiro Nakamura

4.1 Introduction 49

4.2 Millimeter Wave Spectrum Above 20 GHz 52

4.3 Mid-Band Spectrum at 3.3–5.0 GHz and at 2.6 GHz 55

4.4 Low-Band Spectrum Below 3 GHz 58

4.5 Unlicensed Band 59

4.6 Shared Band 62

4.7 3GPP Frequency Variants 64

4.8 Summary 64

References 64

5 5G Architecture 67
Antti Toskala and Miikka Poikselkä

5.1 Introduction 67

5.2 5G Architecture Options 67

5.3 5G Core Network Architecture 70

5.3.1 Access and Mobility Management Function 72

5.3.2 Session Management Function 73

5.3.3 User Plane Function 73

5.3.4 Data Storage Architecture 73

5.3.5 Policy Control Function 73

5.3.6 Network Exposure Function 74

5.3.7 Network Repository Function 74

5.3.8 Network Slice Selection 74

5.3.9 Non-3GPP Interworking Function 74

5.3.10 Auxiliary 5G Core Functions 74

5.4 5G RAN Architecture 75

5.4.1 NG-Interface 78

5.4.2 Xn-Interface 79

5.4.3 E1-Interface 80

5.4.4 F1-Interface 80

5.5 Network Slicing 81

5.5.1 Interworking with LTE 82

5.6 Summary 85

References 86

6 5G Physical Layer 87
Mihai Enescu, Keeth Jayasinghe, Karri Ranta-Aho, Karol Schober, and Antti Toskala

6.1 Introduction 87

6.2 5G Multiple Access Principle 88

6.3 Physical Channels and Signals 92

6.4 Basic Structures for 5G Frame Structure 95

6.5 5G Channel Structures and Beamforming Basics 98

6.6 Random Access 100

6.7 Downlink User Data Transmission 101

6.8 Uplink User Data Transmission 103

6.9 Uplink Signaling Transmission 105

6.10 Downlink Signaling Transmission 108

6.11 Physical Layer Procedures 111

6.11.1 HARQ Procedure 112

6.11.2 Uplink Power Control 112

6.11.3 Timing Advance 113

6.12 5G MIMO and Beamforming Operation 113

6.12.1 Downlink MIMO Transmission Schemes 113

6.12.2 Beam Management Framework 114

6.12.2.1 Initial Beam Acquisition 116

6.12.2.2 Beam Measurement and Reporting 116

6.12.2.3 Beam Indication: QCL and Transmission Configuration Indicator (TCI) 117

6.12.2.4 Beam Recovery 120

6.12.3 CSI Framework 122

6.12.3.1 Reporting Settings 122

6.12.3.2 Resource Settings 122

6.12.3.3 Reporting Configurations 123

6.12.3.4 Report Quantity Configurations 125

6.12.4 CSI Components 126

6.12.4.1 Channel Quality Indicator (CQI) 126

6.12.4.2 Precoding Matrix Indicator (PMI) 126

6.12.4.3 Resource Indicators: CRI, SSBRI, RI, LI 132

6.12.5 Uplink MIMO Transmission Schemes 132

6.12.5.1 Codebook-Based Uplink Transmission 132

6.12.5.2 Non-Codebook-Based Uplink Transmission 133

6.13 Channel Coding with 5G 133

6.13.1 Channel Coding for Data Channel 134

6.13.1.1 5G LDPC Code Design 135

6.13.1.2 5G LDPC Coding Chain 137

6.13.2 Channel Coding for Control Channels 140

6.13.2.1 5G Polar Coding Design 140

6.14 Dual Connectivity 142

6.15 5G Data Rates 144

6.16 Physical Layer Measurements 145

6.17 UE Capability 146

6.18 Summary 147

References 148

7 5G Radio Protocols 149
Tero Henttonen, Jarkko Koskela, Benoist Sébire, and Antti Toskala

7.1 Introduction 149

7.2 5G Radio Protocol Layers 150

7.3 SDAP 151

7.3.1 Overview 151

7.3.2 QoS Flow Remapping 153

7.3.3 MDBV 155

7.3.4 Header 155

7.4 PDCP 156

7.4.1 Overview 156

7.4.2 Reordering 156

7.4.3 Security 157

7.4.4 Header Compression 157

7.4.5 Duplicates and Status Reports 158

7.4.6 Duplication 159

7.5 RLC 160

7.5.1 Overview 160

7.5.2 Segmentation 160

7.5.3 Error Correction 161

7.5.4 Transmissions Modes 161

7.5.5 Duplication 161

7.6 MAC Layer 162

7.6.1 Overview 162

7.6.2 Logical Channels 162

7.6.3 Random Access Procedure 163

7.6.4 HARQ and Transmissions 163

7.6.5 Scheduling Request 164

7.6.6 Logical Channel Prioritization and Multiplexing 164

7.6.7 BSR 165

7.6.8 PHR 166

7.6.9 DRX 166

7.6.10 Bandwidth Parts 166

7.6.11 BFD and Recovery 167

7.6.12 Other Functions 167

7.6.13 MAC PDU Structure 168

7.7 The RRC Protocol 168

7.7.1 Overview 168

7.7.2 Broadcast of System Information 171

7.7.3 Paging 174

7.7.4 Overview of Idle and Inactive Mode Mobility 175

7.7.5 RRC Connection Control and Mobility 179

7.7.6 RRC Support of Upper Layers 183

7.7.7 Different Versions of Release 15 RRC Specifications 184

7.8 Radio Protocols in RAN Architecture 185

7.9 Summary 185

References 186

8 Deployment Aspects 187
Harri Holma, Riku Luostari, Jussi Reunanen, and Puripong Thepchatri

8.1 Introduction 187

8.2 Spectrum Resources 188

8.2.1 Spectrum Refarming and Dynamic Spectrum Sharing 188

8.3 Network Density 190

8.4 Mobile Data Traffic Growth 190

8.4.1 Mobile Data Volume 190

8.4.2 Traffic Asymmetry 191

8.5 Base Station Site Solutions 192

8.6 Electromagnetic Field (EMF) Considerations 194

8.7 Network Synchronization and Coordination Requirements 195

8.7.1 Main Interference Scenarios in TDD System 196

8.7.2 TDD Frame Configuration Options 197

8.7.3 Cell Size and Random Access Channel 197

8.7.4 Guard Period and Safety Zone 198

8.7.5 Intra-Frequency Operation 199

8.7.6 Inter-Operator Synchronization 201

8.7.7 Synchronization Requirements in 3GPP 202

8.7.8 Synchronization from Global Navigation Satellite System (GNSS) 204

8.7.9 Synchronization with ToP 205

8.7.10 Timing Alignment Between Vendors 208

8.8 5G Overlay with Another Vendor LTE 209

8.9 Summary 210

References 211

9 Transport 213
Esa Markus Metsälä and Juha Salmelin

9.1 5G Transport Network 213

9.1.1 5G Transport 213

9.1.2 Types of 5G Transport 214

9.1.3 Own versus Leased Transport 215

9.1.4 Common Transport 216

9.1.5 Mobile Backhaul Tiers 216

9.1.6 Logical and Physical Transport Topology 218

9.1.7 Standards Viewpoint 218

9.2 Capacity and Latency 219

9.2.1 Transport Capacity Upgrades 219

9.2.2 Access Link 220

9.2.3 Distribution Tier 221

9.2.4 Backhaul and High Layer Fronthaul Capacity 221

9.2.5 Low Layer Fronthaul Capacity 222

9.2.6 Latency 223

9.2.7 QoS Marking 224

9.3 Technologies 225

9.3.1 Client Ports 225

9.3.2 Networking Technologies Overview 226

9.4 Fronthaul and Backhaul Interfaces 228

9.4.1 Low Layer Fronthaul 228

9.4.2 NG Interface 230

9.4.3 Xn/X2 Interfaces 231

9.4.4 F1 Interface 231

9.5 Specific Topics 232

9.5.1 Network Slicing in Transport 232

9.5.2 URLLC Transport 233

9.5.3 IAB (Integrated Access and Backhaul) 234

9.5.4 NTNs (Non-Terrestrial Networks) 234

9.5.5 Time-Sensitive Networks 235

References 236

10 5G Performance 239
Harri Holma, Suresh Kalyanasundaram, and Venkat Venkatesan

10.1 Introduction 239

10.2 Peak Data Rates 241

10.3 Practical Data Rates 243

10.3.1 User Data Rates at 2.5–5.0 GHz 243

10.3.2 User Data Rates at 28 GHz 244

10.3.3 User Data Rates with Fixed Wireless Access at 28 GHz 245

10.4 Latency 247

10.4.1 User Plane Latency 247

10.4.2 Low Latency Architecture 253

10.4.3 Control Plane Latency 255

10.5 Link Budgets 257

10.5.1 Link Budget for Sub-6-GHz TDD 257

10.5.2 Link Budget for Low Band FDD 260

10.5.3 Link Budget for Millimeter Waves 260

10.6 Coverage for Sub-6-GHz Band 262

10.6.1 Signal Propagation at 3.5 GHz Band 262

10.6.2 Beamforming Antenna Gain 262

10.6.3 Uplink Coverage Solutions 264

10.7 Massive MIMO and Beamforming Algorithms 269

10.7.1 Antenna Configuration 269

10.7.2 Beamforming Algorithms 271

10.7.3 Radio Network Architecture and Functionality Split 275

10.7.4 RF Solution Benchmarking 277

10.7.5 Distributed MIMO 278

10.8 Packet Scheduling Algorithms 280

10.8.1 Low Latency Scheduling 280

10.8.2 Mini-Slot Scheduling 285

10.9 Spectral Efficiency and Capacity 286

10.9.1 Downlink Spectral Efficiency in 5G Compared to LTE 286

10.9.2 Downlink Spectral Efficiency with Different Antenna Configurations 288

10.9.3 Uplink Spectral Efficiency 288

10.9.4 IMT-2020 Performance Evaluation 289

10.9.5 5G Capacity at Mid-Band 291

10.10 Network Energy Efficiency 291

10.11 Traffic and Device Density 294

10.12 Ultra-Reliability for Mission-Critical Communication 296

10.12.1 Antenna Diversity 296

10.12.2 Macro-Diversity and Multi-Connectivity 296

10.12.3 Interference Cancelation 297

10.12.4 HARQ (Hybrid Automatic Repeat Request) for High Reliability 297

10.13 Mobility and High-Speed Trains 299

10.14 Summary 302

References 302

11 Measurements 305
Yoshihisa Kishiyama and Tetsuro Imai

11.1 Introduction 305

11.2 Propagation Measurements Above 6 GHz 306

11.2.1 Fundamental Experiments 306

11.2.2 Urban Microcellular Scenario 312

11.2.3 Indoor Hotspot Scenario 315

11.2.4 Outdoor-to-Indoor Scenario 319

11.3 Field Experiments with Sub-6-GHz 5G Radio 326

11.3.1 Experimental System with Higher Rank MIMO 326

11.3.2 Field Experiments 328

11.4 Field Experiments of Millimeter Wave 5G Radio 332

11.4.1 Experimental System with Beamforming and Beam Tracking 332

11.4.2 Field Experiments 336

11.5 Summary 344

References 345

12 5G RF Design Challenges 349
Petri Vasenkari, Dominique Brunel, and Laurent Noël

12.1 Introduction 349

12.2 Impact of New Physical Layer on RF Performance 350

12.2.1 New Uplink Waveforms 350

12.2.2 New Frequency Range Definition 352

12.2.3 Impact of NSA Operation on the 5G UE RF Front-End 354

12.2.4 New Features Impacting UE RF Front-End 358

12.2.5 RAN4 Technical Specification (TS) Survival Guide 361

12.3 5G Standalone Performance Aspects in Frequency Range 1 363

12.3.1 New Channel Bandwidths and Improved SU 363

12.3.2 Impact of Large Channel Bandwidths on PA Efficiency Enhancement Techniques 365

12.3.3 FR1 Frequency Bands 366

12.3.4 Transmitter Chain Aspects 369

12.4 5G Standalone Performance Aspects in mmWave Frequency Range 2 373

12.4.1 Channel Bandwidths and SU 373

12.4.2 FR2 Bands 373

12.4.3 FR2 Key RF Parameters 374

12.4.4 Transmitter Aspects 376

12.4.5 Multi-Band Support and Carrier Aggregation 378

12.4.6 OTA Conformance Test Challenges 378

12.5 Dual Uplink Performance Challenges for NSA Operation 381

12.5.1 From Single UL to Dual UL Operation 381

12.5.2 EN-DC: Explosion of LTE-CA Combinations as Baseline to 5G 383

12.5.3 FR1 UE Types and Power Sharing in EN-DC 383

12.5.4 Dual Uplink Challenges for EN-DC Operation in FR1 383

12.5.5 Dual Uplink Challenges for EN-DC and NN-DC Operation in FR2 391

12.6 Examples of UE Implementation Challenges 392

12.6.1 More Antennas, More Bands to Multiplex, and More Concurrency 392

12.6.2 FR2 Antenna Integration and Smartphone Design 395

12.7 Summary 396

References 397

13 5G Modem Design Challenges 399
YihShen Chen, Jiann-Ching Guey, Chienhwa Hwang, PeiKai Liao, Guillaume Sébire, Weide Wu, and Weidong Yang

13.1 Introduction 399

13.2 High Data Rate, System Flexibility, and Computational Complexity 401

13.2.1 Channel Coding Aspects Versus UE Complexity 401

13.2.2 MIMO and Network Flexibility Versus UE Complexity 404

13.3 Low Latency, Flexible Timing, and Modem Control Flow Complexity 406

13.3.1 Low Latency Aspects Versus Modem Processing Capability 407

13.3.2 System Flexibility Versus Modem Control Timing 411

13.4 Multi-RAT Coexistence and Modem Architecture 413

13.4.1 Dual Connectivity and Modem Architecture 414

13.4.2 Impact of LTE/NR Coexistence on Modem Design 416

13.4.3 Uplink Transmission Design for Minimizing Intermodulation Effect 418

13.5 Wider Bandwidth Operation and Modem Power Consumption 419

13.5.1 Modem Power Consumption in Daily Use 419

13.5.2 Reducing Modem Power Consumption by Bandwidth Adaptation 422

13.5.3 Impacts on Modem Design 426

13.6 Summary 428

References 429

14 Internet of Things Optimization 431
Harri Holma, Rapeepat Ratasuk, and Mads Lauridsen

14.1 Introduction 431

14.2 IoT Optimization in LTE Radio 433

14.3 LTE-M 436

14.4 Narrowband-IoT 439

14.5 IoT Optimization in LTE Core Network 442

14.6 Coverage 443

14.7 Delay and Capacity 444

14.8 Power Saving Features 446

14.9 NB-IoT Power Consumption Measurements 448

14.10 IoT Solution Benchmarking 449

14.11 IoT Optimizations in 5G 451

14.12 Summary 458

References 459

15 5G Phase 2 and Beyond 461
Antti Toskala

15.1 Introduction 461

15.2 3GPP Release 16 Timing and Key Themes 461

15.2.1 5G Unlicensed (5G-U) 462

15.2.2 Industrial IoT and URLLC Enhancements 464

15.2.3 Toward Dynamic TDD 466

15.2.4 Integrated Access and Backhaul 467

15.2.5 Mobility Enhancements 469

15.2.6 MIMO Enhancements 470

15.2.7 Multi-Radio Dual Connectivity Enhancements 470

15.2.8 Two-Step RACH 471

15.2.9 UE Power Consumption Reduction 471

15.2.10 LightweightMobile Broadband with NR-Light 472

15.2.11 5G V2X 473

15.2.12 New 5G Core Features in Release 16 474

15.3 Summary and Outlook for Release 17 475

References 476

16 LTE-Advanced Evolution 477
Harri Holma and Timo Lunttila

16.1 Introduction 477

16.2 Overview of LTE Evolution 478

16.3 LTE-Advanced Pro Technologies 481

16.3.1 Multi-Gbps Data Rates with Carrier Aggregation Evolution 481

16.3.2 Utilization of 5 GHz Unlicensed Band 482

16.3.3 Enhanced Spectral Efficiency with 3D Beamforming and Interference Cancelation 485

16.3.4 Extreme Local Capacity with Ultra-Dense Network 487

16.3.5 Millisecond Latency with Shorter Transmission Time Interval 487

16.3.6 IoT Optimization 490

16.3.7 D2D Communications 490

16.3.8 Public Safety 492

16.4 5G and LTE Benchmarking 494

16.4.1 Peak Data Rate 495

16.4.2 Cell Edge Data Rate 495

16.4.3 Spectral Efficiency 496

16.4.4 Mobility 496

16.4.5 Traffic Density 497

16.4.6 Device Density 497

16.5 Summary 498

References 499

Index 501

"Long Term Evolution (LTE) networks were launched commercially 2009 and the technology turned out to be hugely successful for boosting mobile broadband capabilities. Global mobile data traffic has grown by a factor of 10 during the last 5 years. LTE has enabled large number of new applications in smartphones and has brought high speed internet access to hundreds of millions of people that never had internet access earlier. 5G targets are set far beyond LTE in terms of technical capabilities and potential use cases. 5G is designed to provide ultra reliable low latency communication which opens completely new application areas for enterprise communication, like remote control, or for consumer communication like esports and cloud gaming. 5G will also boost mobile broadband performance to data rates beyond 10 Gbps. Those impressive targets require new solutions for the 5G mobile networks including new spectrum options, new antenna structures, new physical layer and protocols designs and new network architectures. Deep understanding of the underlying 5G technology allows to take full benefit of new capabilities. This book describes details of 5G specifications and practical deployment aspects. We hope you enjoy reading the book!"-- Provided by publisher.

About the Author
HARRI HOLMA, Fellow, Nokia Bell Labs, Finland. Harri Holma has edited seven books about 3G and 4G technologies since 2001. Dr Holma is working with Nokia Bell Labs with main interest in radio systems and mobile technologies.

ANTTI TOSKALA, Head of 3GPP Radio Standardization, Nokia Bell Labs, Finland.??Antti Toskala's group was responsible for the standardization of WCDMA physical layer, High Speed Downlink Packet Access (HSDPA) and for the start of uplink packet data evolution (HSUPA). As part of the 2010 LTE World Summit LTE Awards, he received the "Award for Individual Contribution for LTE Development" recognizing his contribution to both LTE standardization and LTE knowledge spreading in the industry.

TAKEHIRO NAKAMURA, VP and Managing Director of the 5G Laboratories in NTT DOCOMO, Inc., Japan. Mr Nakamura joined NTT Laboratories in 1990. He has been engaged in the standardization activities for the WCDMA, HSPA, LTE/LTE-Advanced and 5G at ARIB in Japan since 1997. He has been the leader of 2020 and Beyond Ad Hoc (20B AH) in ARIB since October 2013.

There are no comments for this item.

to post a comment.