Electromagnetic vortices : wave phenomena and engineering applications / edited by Zhi Hao Jiang, Douglas H. Werner.

Contributor(s): Jiang, Zhi Hao [editor.] | Werner, Douglas H, 1960- [editor.]
Language: English Publisher: Hoboken, New Jersey : Wiley-IEEE Press, [2021]Description: 1 online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9781119662822; 9781119662945; 111966294X; 9781119662877; 1119662877; 9781119662969; 1119662966Subject(s): Electromagnetic waves | Spheromaks | Angular momentum | NanostructuresGenre/Form: Electronic books.Additional physical formats: Print version:: Electromagnetic vorticesDDC classification: 530.14/1 LOC classification: QC718.5.E45Online resources: Full text available at Wiley Online Library Click here to view
Contents:
Table of Contents About the Editors xv List of Contributors xvii Preface xxi Part I Fundamentals and Basics of Electromagnetic Vortices 1 1 Fundamentals of Orbital Angular Momentum Beams: Concepts, Antenna Analogies, and Applications 3 Anastasios Papathanasopoulos and Yahya Rahmat-Samii 1.1 Electromagnetic Fields Carry Orbital Angular Momentum 3 1.2 OAM Beams; Properties and Analogies with Conventional Beams 4 1.2.1 Laguerre–Gaussian Modes 5 1.3 Communicating Using OAM: Potentials and Challenges 10 1.3.1 OAM Communication Link Scenarios and Technical Barriers 11 1.3.2 OAM Emerging Applications and Perspectives 14 1.3.2.1 Free-space Communications 14 1.3.2.2 Optical Fiber Communications 17 1.4 OAM Generation Methods 20 1.5 Summary and Perspectives 22 Appendix 1.A OAM Far-field Calculation 23 References 26 2 OAM Radio – Physical Foundations and Applications of Electromagnetic Orbital Angular Momentum in Radio Science and Technology 33 Bo Thidé and Fabrizio Tamburini 2.1 Introduction 33 2.2 Physics 34 2.2.1 The Classical Electromagnetic Field 34 2.2.2 Electrodynamic Observables 36 2.2.2.1 Behavior at Very Long Distances 41 2.3 Implementation 45 2.3.1 Wireless Information Transfer with Linear Momentum 46 2.3.2 Wireless Information Transfer with Angular Momentum 48 2.3.2.1 Spin Angular Momentum vs. Orbital Angular Momentum 50 2.3.2.2 Angular Momentum Transducers 50 2.3.2.3 Electric Hertzian Dipoles 52 2.3.3 Astronomy Applications 58 Appendix A 61 2.A.1 Theory 61 2.A.1.1 Classical Majorana-Oppenheimer Formalism and Its Affinity to First Quantization Formalism 61 2.A.1.1.1 Riemann–Silberstein Electromagnetic Potentials and Fields 63 A.1.1.1 Purely Electric Sources 66 A.1.1.2 Useful Approximations 67 A.1.2.1 The Paraxial Approximation 68 A.1.2.2 The Far-Zone Approximation 70 2.A.2 Poincaré Invariants and Conserved Quantities of the EM Field 74 A.2.1 Energy 74 A.2.2 Linear Momentum 76 A.2.2.1 Gauge Invariance 78 A.2.2.2 First Quantization Formalism 79 A.2.3 Angular Momentum 80 A.2.3.1 Gauge Invariance 82 A.2.3.2 First Quantization Formalism 83 References 84 Part II Physical Wave Phenomena of Electromagnetic Vortices 97 3 Generation of Microwave Vortex Beams Using Metasurfaces 99 Jia Yuan Yin and Tie Jun Cui 3.1 Introduction 99 3.2 Metasurfaces for Vortex-beam Generation 100 3.2.1 Reflective Metasurfaces for Vortex-beam Generation 101 3.2.2 Transmission Metasurfaces for Vortex-beam Generation 108 3.2.3 Planar Metasurfaces for Vortex-beam Generation 110 3.2.4 Metasurfaces for Modified Vortex-beam Generation 112 3.2.5 One-dimensional Metasurface for Vortex-beam Generation 113 3.3 Conclusion 114 Acknowledgments 114 References 115 4 Application of Transformation Optics and 3D Printing Technology in Vortex Wave Generation 121 Jianjia Yi, Shah Nawaz Burokur, and Douglas H. Werner 4.1 Introduction 121 4.2 Theoretical Basis of Transformation Optics and 3D Printing 121 4.2.1 The Concept and Development of Transformation Optics 121 4.2.2 An Overview of 3D Printing Techniques 125 4.3 Several Applications of Transformation Optics in Vortex Waves 128 4.3.1 All-Dielectric Transformed Material for the Generation of OAM Beams 128 4.3.2 All-dielectric Metamaterial Medium for Collimating OAM Vortex Waves 137 4.3.3 A Transformation Optics-Based Lens for Horizontal Radiation of OAM Vortex Waves 147 4.4 Conclusions 153 References 154 5 Millimeter-Wave Transmit-Arrays for High-Capacity and Wideband Generation of Scalar and Vector Vortex Beams 157 Zhi Hao Jiang, Lei Kang, Wei Hong, and Douglas H. Werner 5.1 Introduction 157 5.2 Vector Vortex Beams and Hybrid-Order PSs 159 5.3 Millimeter-Wave Transmit-Array Unit Cell Designs 161 5.3.1 Ka-Band CP Unit Cell Design 161 5.3.2 Q-Band CP Unit Cell Design 165 5.3.3 K-Band Dual-CP Unit Cell Design 166 5.4 Millimeter-Wave Transmit-Arrays for Vortex Beam Multiplexing 171 5.4.1 Far-Field Pattern Calculation for Transmit-Arrays 171 5.4.2 Multiplexing of Scalar Vortex Beams 172 5.4.3 Multiplexing of Vector Vortex Beams with Symmetry Constraints 176 5.4.4 Multiplexing of Vector Vortex Beams with Broken Symmetry 182 5.5 Conclusion 183 Acknowledgment 183 References 184 6 Twisting Light with Metamaterials 189 Natalia M. Litchinitser 6.1 Introduction 189 6.2 OAM Beams on the Nanoscale 194 6.3 Active OAM Sources 201 6.4 OAM Light in Engineered Nonlinear Colloidal Systems 206 6.5 Conclusion 214 References 214 7 Generation of Optical Vortex Beams 223 Yuanjie Yang and Cheng-Wei Qiu 7.1 Introduction 223 7.2 Basic Theory of Optical Vortex 224 7.3 Generation of Optical Vortex 225 7.3.1 Generation of Vortex Beams using Optical Elements 225 7.3.1.1 Spiral Phase Plate 225 7.3.1.2 Fork-grating Hologram 226 7.3.1.3 Spiral Zone Plate Holograms 226 7.3.2 Generation of Vortex Beams Using Digital Devices 227 7.3.3 Generation of Vortex Beams Based on Mode Conversion 229 7.3.4 Generation of Vortex Beams Based on the Superposition of Waves 230 7.3.5 Generation of Vortex Beams Based on Metasurfaces 231 7.4 Generation of Novel Vortex Beams 233 7.4.1 Perfect Vortex Beam 233 7.4.2 Fractional Vortex Beams 235 7.4.3 Anomalous Vortex Beam 237 7.4.4 Vortex Beams with Varying OAM 239 7.5 Conclusion 241 References 241 8 Orbital Angular Momentum Generation, Detection, and Angular Momentum Conservation with Second Harmonic Generation 245 Menglin L. N. Chen, Xiaoyan Y. Z. Xiong, Wei E. I. Sha, and Li Jun Jiang 8.1 Orbital Angular Momentum Generation and Detection 245 8.1.1 OAM Generation 246 8.1.1.1 Complementary Metasurfaces 247 8.1.1.2 Quasi-Continuous Metasurfaces 247 8.1.1.3 Photonic Crystals 250 8.1.2 OAM Detection 252 8.1.2.1 Modified Dynamic Mode Decomposition 252 8.1.2.2 Holographic Metasurfaces 254 8.2 AM Conservation: Nonlinear Optics 256 8.2.1 BEM for Nonlinear Optics 256 8.2.2 Verification of the Algorithm 258 8.2.3 Mixing of Spin and OAM 259 8.2.4 General Angular Momenta Conservation Law 261 8.3 Conclusion 263 References 264 Part III Engineering Applications of Electromagnetic Vortices 269 9 Orbital Angular Momentum Based Structured Radio Beams and its Applications 271 Xianmin Zhang, Shilie Zheng, Wei E. I. Sha, Li Jun Jiang, Xiaowen Xiong, Zelin Zhu, Zhixia Wang, Yuqi Chen, Jiayu Zheng, Xinyue Wang, and Menglin L. N. Chen 9.1 Introduction 271 9.2 PS–OAM Based Structured Beams 272 9.2.1 Plane Spiral OAM 272 9.2.2 Structured Radio Beam 273 9.3 Antennas for Structured Beams 276 9.3.1 Antennas for PS–OAM Waves 276 9.3.2 SIW-based Compact Antenna 279 9.3.3 Partial Arc Transmitting Scheme 284 9.4 Potential Applications 286 9.4.1 Radar Detection 286 9.4.2 MIMO System 287 9.4.3 Spatial Field Digital Modulation 289 9.5 Conclusion 291 References 291 10 OAM Multiplexing Using Uniform Circular Array and Microwave Circuit for Short-range Communication 295 Kentaro Murata and Naoki Honma 10.1 Introduction 295 10.2 OAM Multiplexing System and its Mechanism 297 10.2.1 Coaxial UCA Configuration 297 10.2.2 Circulant Channel Matrix 298 10.2.3 DFT/IDFT Beamformers 299 10.3 OAM Multiplexing for Short-range Communications 300 10.3.1 Achievable Rate 300 10.3.2 Array Topology 301 10.3.3 Optimal Array Radius 304 10.3.4 Butler Matrix 309 10.3.5 Performance Evaluation 312 10.4 Conclusion and Key Challenges 317 References 318 11 OAM Communications in Multipath Environments 321 Xiaoming Chen and Wei Xue 11.1 Introduction 321 11.1.1 Fading in Wireless Propagation 321 11.1.1.1 Pass Loss 322 11.1.1.2 Large-Scale Fading 322 11.1.1.3 Small-Scale Fading 322 11.1.2 Diversity and Multiplexing 323 11.1.3 MIMO Systems 324 11.2 OAM Communication in Line-of-sight Environment 325 11.2.1 Conventional OAM Multiplexing 325 11.2.2 OAM Multiplexing with Spatial Equalization 329 11.3 OAM Multiplexing in Multipath Environment 337 11.3.1 Specular Reflection 337 11.3.1.1 Intra-channel Interference 338 11.3.1.2 Inter-channel Interference 341 11.3.2 Indoor Environment 343 11.3.2.1 Inter-Symbol Interference (ISI) 343 11.3.2.2 Antenna misalignment 346 11.3.3 Highly Reverberant Environments 349 11.4 Conclusion 354 References 354 12 High-capacity Free-space Optical Communications Using Multiplexing of Multiple OAM Beams 357 Alan E. Willner, Runzhou Zhang, Kai Pang, Haoqian Song, Cong Liu, Hao Song, Xinzhou Su, Huibin Zhou, Nanzhe Hu, Zhe Zhao, Guodong Xie, Yongxiong Ren, Hao Huang, and Moshe Tur 12.1 Introduction 357 12.2 Challenges for an OAM Multiplexing Free-space Optical Communication System 359 12.2.1 Beam divergence 360 12.2.2 Misalignment 361 12.2.3 Atmospheric Turbulence Effects 362 12.2.4 Obstruction 364 12.2.5 Summary 364 12.3 Free-space Optical OAM Links 364 12.3.1 High-capacity OAM Multiplexed Communication Link Under Laboratory Conditions 365 12.3.2 OAM-based FSO Link Beyond Laboratory Distances 368 12.3.3 Summary 371 12.4 Inter-channel Crosstalk Mitigation Methods in OAM-multiplexed FSO Communications 371 12.4.1 Adaptive Optics for Crosstalk Mitigation 371 12.4.1.1 AO Using a Wavefront Sensor (WFS) and a Gaussian Probe Beam 372 12.4.1.2 AO Using WFS and Gaussian Probe Beam in a Quantum Communication Link 374 12.4.1.3 AO Using a Camera for Beam Intensity Measurement 376 12.4.2 Spatial Modes Manipulation for Crosstalk Mitigation 378 12.4.2.1 Turbulence Precompensation by OAM Mode Combination 378 12.4.2.2 Simultaneous Orthogonalizing and Shaping of Multiple LG Beams 380 12.4.3 Digital Signal Processing for Crosstalk Mitigation 381 12.4.3.1 MIMO Equalization for Crosstalk Mitigation in Laboratory 382 12.4.3.2 Turbulence-Resilient Beam Mixing for Crosstalk Mitigation 383 12.4.4 Summary 384 12.5 OAM Multiplexing for Unmanned Aerial Vehicle (UAV) Platforms 385 12.5.1 OAM System Design and Demonstrations for UAV Platforms 386 12.5.2 Multiple-Input-Multiple-Output (MIMO) Mitigation for Atmospheric Turbulence in UAV Platforms 389 12.5.3 Summary 390 12.6 OAM Multiplexing in Underwater Environments 391 12.6.1 Underwater Effects for OAM Beam Propagation 392 12.6.2 OAM Multiplexing Demonstrations in Underwater Environments 392 12.6.3 Multiple-Input-Multiple-Output (MIMO) Mitigation for Inter-Channel Crosstalk in Underwater Environments 394 12.6.4 Summary 394 12.7 Summary of this Chapter 394 Acknowledgment 396 References 396 Part IV Multidisciplinary Explorations of Electromagnetic Vortices 401 13 Theory of Vector Beams for Chirality and Magnetism Detection of Subwavelength Particles 403 Mina Hanifeh and Filippo Capolino 13.1 Characterization of Azimuthally and Radially Polarized Beams 403 13.2 Circular Dichroism for a Particle of Subwavelength Size 407 13.2.1 Helicity of an Azimuthally Radially Polarized Vector Beam 409 13.3 Photoinduced Force Microscopy at Nanoscale 411 13.3.1 Magnetic Photoinduced Force Microscopy by Using an APB 412 13.3.2 Chirality Photoinduced Force Microscopy 415 13.4 Conclusion 418 References 418 14 Quantum Applications of Structured Photons 423 Alessio D’Errico and Ebrahim Karimi 14.1 Introduction 423 14.2 Photonic Degrees of Freedom 424 14.3 Single Photon Source: SPDC 426 14.4 Generation and Detection of Structured Photon Quantum States 430 14.4.1 Generation of Structured Photon States 430 14.4.2 Detection of Structured Photons 433 14.5 Quantum Key Distribution 434 14.5.1 BB84 Protocol 436 14.5.2 Alignment-free QKD 437 14.5.3 High-dimensional QKD 438 14.6 Quantum Simulation with Quantum Walks 442 14.6.1 Quantum Walks in the OAM Space 443 14.6.2 Shaping the Walker Space: Cyclic Walks and Walks on 2D Lattices 444 14.6.3 Applications: Wavepacket Dynamics and Detection of Topological Phases 446 14.7 Outlook 450 References 450 Index 457
Summary: "This book describes cutting-edge research and development on electromagnetic vortex waves, including their related wave properties and a variety of potential transformative applications. It is divided into three parts. The first part presents the generation/sorting/manipulation and interesting wave behavior of vortex waves in the infrared and optical regimes with custom-designed nanostructures. The second cluster deals with the generation/multiplexing/propagation of vortex waves at microwave and millimeter-wave frequencies. The last group of chapters exhibit several representative practical applications of vortex waves from a system perspective ranging from microwave frequencies to optical wavelengths. Each chapter is contributed by an internationally recognized author or group of authors covering the latest research results"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Home library Call number Status Date due Barcode Item holds
EBOOK EBOOK COLLEGE LIBRARY
COLLEGE LIBRARY
530.141 El256 2022 (Browse shelf) Available
Total holds: 0

Includes bibliographical references and index.

Table of Contents

About the Editors xv

List of Contributors xvii

Preface xxi

Part I Fundamentals and Basics of Electromagnetic Vortices 1

1 Fundamentals of Orbital Angular Momentum Beams: Concepts, Antenna Analogies, and Applications 3
Anastasios Papathanasopoulos and Yahya Rahmat-Samii

1.1 Electromagnetic Fields Carry Orbital Angular Momentum 3

1.2 OAM Beams; Properties and Analogies with Conventional Beams 4

1.2.1 Laguerre–Gaussian Modes 5

1.3 Communicating Using OAM: Potentials and Challenges 10

1.3.1 OAM Communication Link Scenarios and Technical Barriers 11

1.3.2 OAM Emerging Applications and Perspectives 14

1.3.2.1 Free-space Communications 14

1.3.2.2 Optical Fiber Communications 17

1.4 OAM Generation Methods 20

1.5 Summary and Perspectives 22

Appendix 1.A OAM Far-field Calculation 23

References 26

2 OAM Radio – Physical Foundations and Applications of Electromagnetic Orbital Angular Momentum in Radio Science and Technology 33
Bo Thidé and Fabrizio Tamburini

2.1 Introduction 33

2.2 Physics 34

2.2.1 The Classical Electromagnetic Field 34

2.2.2 Electrodynamic Observables 36

2.2.2.1 Behavior at Very Long Distances 41

2.3 Implementation 45

2.3.1 Wireless Information Transfer with Linear Momentum 46

2.3.2 Wireless Information Transfer with Angular Momentum 48

2.3.2.1 Spin Angular Momentum vs. Orbital Angular Momentum 50

2.3.2.2 Angular Momentum Transducers 50

2.3.2.3 Electric Hertzian Dipoles 52

2.3.3 Astronomy Applications 58

Appendix A 61

2.A.1 Theory 61

2.A.1.1 Classical Majorana-Oppenheimer Formalism and Its Affinity to First Quantization Formalism 61

2.A.1.1.1 Riemann–Silberstein Electromagnetic Potentials and Fields 63

A.1.1.1 Purely Electric Sources 66

A.1.1.2 Useful Approximations 67

A.1.2.1 The Paraxial Approximation 68

A.1.2.2 The Far-Zone Approximation 70

2.A.2 Poincaré Invariants and Conserved Quantities of the EM Field 74

A.2.1 Energy 74

A.2.2 Linear Momentum 76

A.2.2.1 Gauge Invariance 78

A.2.2.2 First Quantization Formalism 79

A.2.3 Angular Momentum 80

A.2.3.1 Gauge Invariance 82

A.2.3.2 First Quantization Formalism 83

References 84

Part II Physical Wave Phenomena of Electromagnetic Vortices 97

3 Generation of Microwave Vortex Beams Using Metasurfaces 99
Jia Yuan Yin and Tie Jun Cui

3.1 Introduction 99

3.2 Metasurfaces for Vortex-beam Generation 100

3.2.1 Reflective Metasurfaces for Vortex-beam Generation 101

3.2.2 Transmission Metasurfaces for Vortex-beam Generation 108

3.2.3 Planar Metasurfaces for Vortex-beam Generation 110

3.2.4 Metasurfaces for Modified Vortex-beam Generation 112

3.2.5 One-dimensional Metasurface for Vortex-beam Generation 113

3.3 Conclusion 114

Acknowledgments 114

References 115

4 Application of Transformation Optics and 3D Printing Technology in Vortex Wave Generation 121
Jianjia Yi, Shah Nawaz Burokur, and Douglas H. Werner

4.1 Introduction 121

4.2 Theoretical Basis of Transformation Optics and 3D Printing 121

4.2.1 The Concept and Development of Transformation Optics 121

4.2.2 An Overview of 3D Printing Techniques 125

4.3 Several Applications of Transformation Optics in Vortex Waves 128

4.3.1 All-Dielectric Transformed Material for the Generation of OAM Beams 128

4.3.2 All-dielectric Metamaterial Medium for Collimating OAM Vortex Waves 137

4.3.3 A Transformation Optics-Based Lens for Horizontal Radiation of OAM Vortex Waves 147

4.4 Conclusions 153

References 154

5 Millimeter-Wave Transmit-Arrays for High-Capacity and Wideband Generation of Scalar and Vector Vortex Beams 157
Zhi Hao Jiang, Lei Kang, Wei Hong, and Douglas H. Werner

5.1 Introduction 157

5.2 Vector Vortex Beams and Hybrid-Order PSs 159

5.3 Millimeter-Wave Transmit-Array Unit Cell Designs 161

5.3.1 Ka-Band CP Unit Cell Design 161

5.3.2 Q-Band CP Unit Cell Design 165

5.3.3 K-Band Dual-CP Unit Cell Design 166

5.4 Millimeter-Wave Transmit-Arrays for Vortex Beam Multiplexing 171

5.4.1 Far-Field Pattern Calculation for Transmit-Arrays 171

5.4.2 Multiplexing of Scalar Vortex Beams 172

5.4.3 Multiplexing of Vector Vortex Beams with Symmetry Constraints 176

5.4.4 Multiplexing of Vector Vortex Beams with Broken Symmetry 182

5.5 Conclusion 183

Acknowledgment 183

References 184

6 Twisting Light with Metamaterials 189
Natalia M. Litchinitser

6.1 Introduction 189

6.2 OAM Beams on the Nanoscale 194

6.3 Active OAM Sources 201

6.4 OAM Light in Engineered Nonlinear Colloidal Systems 206

6.5 Conclusion 214

References 214

7 Generation of Optical Vortex Beams 223
Yuanjie Yang and Cheng-Wei Qiu

7.1 Introduction 223

7.2 Basic Theory of Optical Vortex 224

7.3 Generation of Optical Vortex 225

7.3.1 Generation of Vortex Beams using Optical Elements 225

7.3.1.1 Spiral Phase Plate 225

7.3.1.2 Fork-grating Hologram 226

7.3.1.3 Spiral Zone Plate Holograms 226

7.3.2 Generation of Vortex Beams Using Digital Devices 227

7.3.3 Generation of Vortex Beams Based on Mode Conversion 229

7.3.4 Generation of Vortex Beams Based on the Superposition of Waves 230

7.3.5 Generation of Vortex Beams Based on Metasurfaces 231

7.4 Generation of Novel Vortex Beams 233

7.4.1 Perfect Vortex Beam 233

7.4.2 Fractional Vortex Beams 235

7.4.3 Anomalous Vortex Beam 237

7.4.4 Vortex Beams with Varying OAM 239

7.5 Conclusion 241

References 241

8 Orbital Angular Momentum Generation, Detection, and Angular Momentum Conservation with Second Harmonic Generation 245
Menglin L. N. Chen, Xiaoyan Y. Z. Xiong, Wei E. I. Sha, and Li Jun Jiang

8.1 Orbital Angular Momentum Generation and Detection 245

8.1.1 OAM Generation 246

8.1.1.1 Complementary Metasurfaces 247

8.1.1.2 Quasi-Continuous Metasurfaces 247

8.1.1.3 Photonic Crystals 250

8.1.2 OAM Detection 252

8.1.2.1 Modified Dynamic Mode Decomposition 252

8.1.2.2 Holographic Metasurfaces 254

8.2 AM Conservation: Nonlinear Optics 256

8.2.1 BEM for Nonlinear Optics 256

8.2.2 Verification of the Algorithm 258

8.2.3 Mixing of Spin and OAM 259

8.2.4 General Angular Momenta Conservation Law 261

8.3 Conclusion 263

References 264

Part III Engineering Applications of Electromagnetic Vortices 269

9 Orbital Angular Momentum Based Structured Radio Beams and its Applications 271
Xianmin Zhang, Shilie Zheng, Wei E. I. Sha, Li Jun Jiang, Xiaowen Xiong, Zelin Zhu, Zhixia Wang, Yuqi Chen, Jiayu Zheng, Xinyue Wang, and Menglin L. N. Chen

9.1 Introduction 271

9.2 PS–OAM Based Structured Beams 272

9.2.1 Plane Spiral OAM 272

9.2.2 Structured Radio Beam 273

9.3 Antennas for Structured Beams 276

9.3.1 Antennas for PS–OAM Waves 276

9.3.2 SIW-based Compact Antenna 279

9.3.3 Partial Arc Transmitting Scheme 284

9.4 Potential Applications 286

9.4.1 Radar Detection 286

9.4.2 MIMO System 287

9.4.3 Spatial Field Digital Modulation 289

9.5 Conclusion 291

References 291

10 OAM Multiplexing Using Uniform Circular Array and Microwave Circuit for Short-range Communication 295
Kentaro Murata and Naoki Honma

10.1 Introduction 295

10.2 OAM Multiplexing System and its Mechanism 297

10.2.1 Coaxial UCA Configuration 297

10.2.2 Circulant Channel Matrix 298

10.2.3 DFT/IDFT Beamformers 299

10.3 OAM Multiplexing for Short-range Communications 300

10.3.1 Achievable Rate 300

10.3.2 Array Topology 301

10.3.3 Optimal Array Radius 304

10.3.4 Butler Matrix 309

10.3.5 Performance Evaluation 312

10.4 Conclusion and Key Challenges 317

References 318

11 OAM Communications in Multipath Environments 321
Xiaoming Chen and Wei Xue

11.1 Introduction 321

11.1.1 Fading in Wireless Propagation 321

11.1.1.1 Pass Loss 322

11.1.1.2 Large-Scale Fading 322

11.1.1.3 Small-Scale Fading 322

11.1.2 Diversity and Multiplexing 323

11.1.3 MIMO Systems 324

11.2 OAM Communication in Line-of-sight Environment 325

11.2.1 Conventional OAM Multiplexing 325

11.2.2 OAM Multiplexing with Spatial Equalization 329

11.3 OAM Multiplexing in Multipath Environment 337

11.3.1 Specular Reflection 337

11.3.1.1 Intra-channel Interference 338

11.3.1.2 Inter-channel Interference 341

11.3.2 Indoor Environment 343

11.3.2.1 Inter-Symbol Interference (ISI) 343

11.3.2.2 Antenna misalignment 346

11.3.3 Highly Reverberant Environments 349

11.4 Conclusion 354

References 354

12 High-capacity Free-space Optical Communications Using Multiplexing of Multiple OAM Beams 357
Alan E. Willner, Runzhou Zhang, Kai Pang, Haoqian Song, Cong Liu, Hao Song, Xinzhou Su, Huibin Zhou, Nanzhe Hu, Zhe Zhao, Guodong Xie, Yongxiong Ren, Hao Huang, and Moshe Tur

12.1 Introduction 357

12.2 Challenges for an OAM Multiplexing Free-space Optical Communication System 359

12.2.1 Beam divergence 360

12.2.2 Misalignment 361

12.2.3 Atmospheric Turbulence Effects 362

12.2.4 Obstruction 364

12.2.5 Summary 364

12.3 Free-space Optical OAM Links 364

12.3.1 High-capacity OAM Multiplexed Communication Link Under Laboratory Conditions 365

12.3.2 OAM-based FSO Link Beyond Laboratory Distances 368

12.3.3 Summary 371

12.4 Inter-channel Crosstalk Mitigation Methods in OAM-multiplexed FSO Communications 371

12.4.1 Adaptive Optics for Crosstalk Mitigation 371

12.4.1.1 AO Using a Wavefront Sensor (WFS) and a Gaussian Probe Beam 372

12.4.1.2 AO Using WFS and Gaussian Probe Beam in a Quantum Communication Link 374

12.4.1.3 AO Using a Camera for Beam Intensity Measurement 376

12.4.2 Spatial Modes Manipulation for Crosstalk Mitigation 378

12.4.2.1 Turbulence Precompensation by OAM Mode Combination 378

12.4.2.2 Simultaneous Orthogonalizing and Shaping of Multiple LG Beams 380

12.4.3 Digital Signal Processing for Crosstalk Mitigation 381

12.4.3.1 MIMO Equalization for Crosstalk Mitigation in Laboratory 382

12.4.3.2 Turbulence-Resilient Beam Mixing for Crosstalk Mitigation 383

12.4.4 Summary 384

12.5 OAM Multiplexing for Unmanned Aerial Vehicle (UAV) Platforms 385

12.5.1 OAM System Design and Demonstrations for UAV Platforms 386

12.5.2 Multiple-Input-Multiple-Output (MIMO) Mitigation for Atmospheric Turbulence in UAV Platforms 389

12.5.3 Summary 390

12.6 OAM Multiplexing in Underwater Environments 391

12.6.1 Underwater Effects for OAM Beam Propagation 392

12.6.2 OAM Multiplexing Demonstrations in Underwater Environments 392

12.6.3 Multiple-Input-Multiple-Output (MIMO) Mitigation for Inter-Channel Crosstalk in Underwater Environments 394

12.6.4 Summary 394

12.7 Summary of this Chapter 394

Acknowledgment 396

References 396

Part IV Multidisciplinary Explorations of Electromagnetic Vortices 401

13 Theory of Vector Beams for Chirality and Magnetism Detection of Subwavelength Particles 403
Mina Hanifeh and Filippo Capolino

13.1 Characterization of Azimuthally and Radially Polarized Beams 403

13.2 Circular Dichroism for a Particle of Subwavelength Size 407

13.2.1 Helicity of an Azimuthally Radially Polarized Vector Beam 409

13.3 Photoinduced Force Microscopy at Nanoscale 411

13.3.1 Magnetic Photoinduced Force Microscopy by Using an APB 412

13.3.2 Chirality Photoinduced Force Microscopy 415

13.4 Conclusion 418

References 418

14 Quantum Applications of Structured Photons 423
Alessio D’Errico and Ebrahim Karimi

14.1 Introduction 423

14.2 Photonic Degrees of Freedom 424

14.3 Single Photon Source: SPDC 426

14.4 Generation and Detection of Structured Photon Quantum States 430

14.4.1 Generation of Structured Photon States 430

14.4.2 Detection of Structured Photons 433

14.5 Quantum Key Distribution 434

14.5.1 BB84 Protocol 436

14.5.2 Alignment-free QKD 437

14.5.3 High-dimensional QKD 438

14.6 Quantum Simulation with Quantum Walks 442

14.6.1 Quantum Walks in the OAM Space 443

14.6.2 Shaping the Walker Space: Cyclic Walks and Walks on 2D Lattices 444

14.6.3 Applications: Wavepacket Dynamics and Detection of Topological Phases 446

14.7 Outlook 450

References 450

Index 457

Available to OhioLINK libraries.

"This book describes cutting-edge research and development on electromagnetic vortex waves, including their related wave properties and a variety of potential transformative applications. It is divided into three parts. The first part presents the generation/sorting/manipulation and interesting wave behavior of vortex waves in the infrared and optical regimes with custom-designed nanostructures. The second cluster deals with the generation/multiplexing/propagation of vortex waves at microwave and millimeter-wave frequencies. The last group of chapters exhibit several representative practical applications of vortex waves from a system perspective ranging from microwave frequencies to optical wavelengths. Each chapter is contributed by an internationally recognized author or group of authors covering the latest research results"-- Provided by publisher.

About the Author

ZHI HAO JIANG, PHD, is Professor at the State Key Laboratory of Millimeter Waves and Associate Dean of the School of Information Science and Engineering, Southeast University. He is the co-editor of Electromagnetics of Body-Area Networks: Antennas, Propagation, and RF Systems.

DOUGLAS H. WERNER, PhD, is Director of the Computational Electromagnetics and Antennas Research Lab, as well as a faculty member of the Materials Research Institute at Penn State. He is also Editor for the IEEE Press Series on Electromagnetic Wave Theory & Applications.

There are no comments for this item.

to post a comment.