Elements of information theory / Thomas M. Cover, Joy A. Thomas.

By: Cover, T. M, 1938- [author.]
Contributor(s): Thomas, Joy A
Language: English Publisher: Hoboken, New Jersey : John Wiley & Sons, Inc., c2006Edition: 2nd edDescription: xxiii, 748 p. : ill. ; 25 cmContent type: text Media type: computer Carrier type: online resourceISBN: 9780471748816; 9780471748823 (ebook)Subject(s): Information theoryGenre/Form: Electronic books.DDC classification: 003.54 LOC classification: Q360 | .C68 2006Online resources: Full text available at Wiley Online Library Click here to view
Contents:
Contents v Preface to the Second Edition xv Preface to the First Edition xvii Acknowledgments for the Second Edition xxi Acknowledgments for the First Edition xxiii 1 Introduction and Preview 1 1.1 Preview of the Book 5 2 Entropy, Relative Entropy, and Mutual Information 13 2.1 Entropy 13 2.2 Joint Entropy and Conditional Entropy 16 2.3 Relative Entropy and Mutual Information 19 2.4 Relationship Between Entropy and Mutual Information 20 2.5 Chain Rules for Entropy, Relative Entropy, and Mutual Information 22 2.6 Jensen’s Inequality and Its Consequences 25 2.7 Log Sum Inequality and Its Applications 30 2.8 Data-Processing Inequality 34 2.9 Sufficient Statistics 35 2.10 Fano’s Inequality 37 Summary 41 Problems 43 Historical Notes 54 3 Asymptotic Equipartition Property 57 3.1 Asymptotic Equipartition Property Theorem 58 3.2 Consequences of the AEP: Data Compression 60 3.3 High-Probability Sets and the Typical Set 62 Summary 64 Problems 64 Historical Notes 69 4 Entropy Rates of a Stochastic Process 71 4.1 Markov Chains 71 4.2 Entropy Rate 74 4.3 Example: Entropy Rate of a Random Walk on a Weighted Graph 78 4.4 Second Law of Thermodynamics 81 4.5 Functions of Markov Chains 84 Summary 87 Problems 88 Historical Notes 100 5 Data Compression 103 5.1 Examples of Codes 103 5.2 Kraft Inequality 107 5.3 Optimal Codes 110 5.4 Bounds on the Optimal Code Length 112 5.5 Kraft Inequality for Uniquely Decodable Codes 115 5.6 Huffman Codes 118 5.7 Some Comments on Huffman Codes 120 5.8 Optimality of Huffman Codes 123 5.9 Shannon–Fano–Elias Coding 127 5.10 Competitive Optimality of the Shannon Code 130 5.11 Generation of Discrete Distributions from Fair Coins 134 Summary 141 Problems 142 Historical Notes 157 6 Gambling and Data Compression 159 6.1 The Horse Race 159 6.2 Gambling and Side Information 164 6.3 Dependent Horse Races and Entropy Rate 166 6.4 The Entropy of English 168 6.5 Data Compression and Gambling 171 6.6 Gambling Estimate of the Entropy of English 173 Summary 175 Problems 176 Historical Notes 182 7 Channel Capacity 183 7.1 Examples of Channel Capacity 184 7.1.1 Noiseless Binary Channel 184 7.1.2 Noisy Channel with Nonoverlapping Outputs 185 7.1.3 Noisy Typewriter 186 7.1.4 Binary Symmetric Channel 187 7.1.5 Binary Erasure Channel 188 7.2 Symmetric Channels 189 7.3 Properties of Channel Capacity 191 7.4 Preview of the Channel Coding Theorem 191 7.5 Definitions 192 7.6 Jointly Typical Sequences 195 7.7 Channel Coding Theorem 199 7.8 Zero-Error Codes 205 7.9 Fano’s Inequality and the Converse to the Coding Theorem 206 7.10 Equality in the Converse to the Channel Coding Theorem 208 7.11 Hamming Codes 210 7.12 Feedback Capacity 216 7.13 Source–Channel Separation Theorem 218 Summary 222 Problems 223 Historical Notes 240 8 Differential Entropy 243 8.1 Definitions 243 8.2 AEP for Continuous Random Variables 245 8.3 Relation of Differential Entropy to Discrete Entropy 247 8.4 Joint and Conditional Differential Entropy 249 8.5 Relative Entropy and Mutual Information 250 8.6 Properties of Differential Entropy, Relative Entropy, and Mutual Information 252 Summary 256 Problems 256 Historical Notes 259 9 Gaussian Channel 261 9.1 Gaussian Channel: Definitions 263 9.2 Converse to the Coding Theorem for Gaussian Channels 268 9.3 Bandlimited Channels 270 9.4 Parallel Gaussian Channels 274 9.5 Channels with Colored Gaussian Noise 277 9.6 Gaussian Channels with Feedback 280 Summary 289 Problems 290 Historical Notes 299 10 Rate Distortion Theory 301 10.1 Quantization 301 10.2 Definitions 303 10.3 Calculation of the Rate Distortion Function 307 10.3.1 Binary Source 307 10.3.2 Gaussian Source 310 10.3.3 Simultaneous Description of Independent Gaussian Random Variables 312 10.4 Converse to the Rate Distortion Theorem 315 10.5 Achievability of the Rate Distortion Function 318 10.6 Strongly Typical Sequences and Rate Distortion 325 10.7 Characterization of the Rate Distortion Function 329 10.8 Computation of Channel Capacity and the Rate Distortion Function 332 Summary 335 Problems 336 Historical Notes 345 11 Information Theory and Statistics 347 11.1 Method of Types 347 11.2 Law of Large Numbers 355 11.3 Universal Source Coding 357 11.4 Large Deviation Theory 360 11.5 Examples of Sanov’s Theorem 364 11.6 Conditional Limit Theorem 366 11.7 Hypothesis Testing 375 11.8 Chernoff–Stein Lemma 380 11.9 Chernoff Information 384 11.10 Fisher Information and the Cramér–Rao Inequality 392 Summary 397 Problems 399 Historical Notes 408 12 Maximum Entropy 409 12.1 Maximum Entropy Distributions 409 12.2 Examples 411 12.3 Anomalous Maximum Entropy Problem 413 12.4 Spectrum Estimation 415 12.5 Entropy Rates of a Gaussian Process 416 12.6 Burg’s Maximum Entropy Theorem 417 Summary 420 Problems 421 Historical Notes 425 13 Universal Source Coding 427 13.1 Universal Codes and Channel Capacity 428 13.2 Universal Coding for Binary Sequences 433 13.3 Arithmetic Coding 436 13.4 Lempel–Ziv Coding 440 13.4.1 Sliding Window Lempel–Ziv Algorithm 441 13.4.2 Tree-Structured Lempel–Ziv Algorithms 442 13.5 Optimality of Lempel–Ziv Algorithms 443 13.5.1 Sliding Window Lempel–Ziv Algorithms 443 13.5.2 Optimality of Tree-Structured Lempel–Ziv Compression 448 Summary 456 Problems 457 Historical Notes 461 14 Kolmogorov Complexity 463 14.1 Models of Computation 464 14.2 Kolmogorov Complexity: Definitions and Examples 466 14.3 Kolmogorov Complexity and Entropy 473 14.4 Kolmogorov Complexity of Integers 475 14.5 Algorithmically Random and Incompressible Sequences 476 14.6 Universal Probability 480 14.7 Kolmogorov complexity 482 14.8 Ω 484 14.9 Universal Gambling 487 14.10 Occam’s Razor 488 14.11 Kolmogorov Complexity and Universal Probability 490 14.12 Kolmogorov Sufficient Statistic 496 14.13 Minimum Description Length Principle 500 Summary 501 Problems 503 Historical Notes 507 15 Network Information Theory 509 15.1 Gaussian Multiple-User Channels 513 15.1.1 Single-User Gaussian Channel 513 15.1.2 Gaussian Multiple-Access Channel with m Users 514 15.1.3 Gaussian Broadcast Channel 515 15.1.4 Gaussian Relay Channel 516 15.1.5 Gaussian Interference Channel 518 15.1.6 Gaussian Two-Way Channel 519 15.2 Jointly Typical Sequences 520 15.3 Multiple-Access Channel 524 15.3.1 Achievability of the Capacity Region for the Multiple-Access Channel 530 15.3.2 Comments on the Capacity Region for the Multiple-Access Channel 532 15.3.3 Convexity of the Capacity Region of the Multiple-Access Channel 534 15.3.4 Converse for the Multiple-Access Channel 538 15.3.5 m-User Multiple-Access Channels 543 15.3.6 Gaussian Multiple-Access Channels 544 15.4 Encoding of Correlated Sources 549 15.4.1 Achievability of the Slepian–Wolf Theorem 551 15.4.2 Converse for the Slepian–Wolf Theorem 555 15.4.3 Slepian–Wolf Theorem for Many Sources 556 15.4.4 Interpretation of Slepian–Wolf Coding 557 15.5 Duality Between Slepian–Wolf Encoding and Multiple-Access Channels 558 15.6 Broadcast Channel 560 15.6.1 Definitions for a Broadcast Channel 563 15.6.2 Degraded Broadcast Channels 564 15.6.3 Capacity Region for the Degraded Broadcast Channel 565 15.7 Relay Channel 571 15.8 Source Coding with Side Information 575 15.9 Rate Distortion with Side Information 580 15.10 General Multiterminal Networks 587 Summary 594 Problems 596 Historical Notes 609 16 Information Theory and Portfolio Theory 613 16.1 The Stock Market: Some Definitions 613 16.2 Kuhn–Tucker Characterization of the Log-Optimal Portfolio 617 16.3 Asymptotic Optimality of the Log-Optimal Portfolio 619 16.4 Side Information and the Growth Rate 621 16.5 Investment in Stationary Markets 623 16.6 Competitive Optimality of the Log-Optimal Portfolio 627 16.7 Universal Portfolios 629 16.7.1 Finite-Horizon Universal Portfolios 631 16.7.2 Horizon-Free Universal Portfolios 638 16.8 Shannon–McMillan–Breiman Theorem (General AEP) 644 Summary 650 Problems 652 Historical Notes 655 17 Inequalities in Information Theory 657 17.1 Basic Inequalities of Information Theory 657 17.2 Differential Entropy 660 17.3 Bounds on Entropy and Relative Entropy 663 17.4 Inequalities for Types 665 17.5 Combinatorial Bounds on Entropy 666 17.6 Entropy Rates of Subsets 667 17.7 Entropy and Fisher Information 671 17.8 Entropy Power Inequality and Brunn–Minkowski Inequality 674 17.9 Inequalities for Determinants 679 17.10 Inequalities for Ratios of Determinants 683 Summary 686 Problems 686 Historical Notes 687 Bibliography 689 List of Symbols 723 Index 727
Summary: The latest edition of this classic is updated with new problem sets and material The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory. All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points. The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated references Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Home library Call number Status Date due Barcode Item holds
EBOOK EBOOK COLLEGE LIBRARY
COLLEGE LIBRARY
LIC Gateway
003.54 C8382 2006 (Browse shelf) Available CL-50655
Total holds: 0

ABOUT THE AUTHOR
THOMAS M. COVER, PHD, is Professor in the departments of electrical engineering and statistics, Stanford University. A recipient of the 1991 IEEE Claude E. Shannon Award, Dr. Cover is a past president of the IEEE Information Theory Society, a Fellow of the IEEE and the Institute of Mathematical Statistics, and a member of the National Academy of Engineering and the American Academy of Arts and Science. He has authored more than 100 technical papers and is coeditor of Open Problems in Communication and Computation.

JOY A. THOMAS, PHD, is the Chief Scientist at Stratify, Inc., a Silicon Valley start-up specializing in organizing unstructured information. After receiving his PhD at Stanford, Dr. Thomas spent more than nine years at the IBM T. J. Watson Research Center in Yorktown Heights, New York. Dr. Thomas is a recipient of the IEEE Charles LeGeyt Fortescue Fellowship.

Includes bibliographical references (p. 689-721) and index.

Contents v

Preface to the Second Edition xv

Preface to the First Edition xvii

Acknowledgments for the Second Edition xxi

Acknowledgments for the First Edition xxiii

1 Introduction and Preview 1

1.1 Preview of the Book 5

2 Entropy, Relative Entropy, and Mutual Information 13

2.1 Entropy 13

2.2 Joint Entropy and Conditional Entropy 16

2.3 Relative Entropy and Mutual Information 19

2.4 Relationship Between Entropy and Mutual Information 20

2.5 Chain Rules for Entropy, Relative Entropy, and Mutual Information 22

2.6 Jensen’s Inequality and Its Consequences 25

2.7 Log Sum Inequality and Its Applications 30

2.8 Data-Processing Inequality 34

2.9 Sufficient Statistics 35

2.10 Fano’s Inequality 37

Summary 41

Problems 43

Historical Notes 54

3 Asymptotic Equipartition Property 57

3.1 Asymptotic Equipartition Property Theorem 58

3.2 Consequences of the AEP: Data Compression 60

3.3 High-Probability Sets and the Typical Set 62

Summary 64

Problems 64

Historical Notes 69

4 Entropy Rates of a Stochastic Process 71

4.1 Markov Chains 71

4.2 Entropy Rate 74

4.3 Example: Entropy Rate of a Random Walk on a Weighted Graph 78

4.4 Second Law of Thermodynamics 81

4.5 Functions of Markov Chains 84

Summary 87

Problems 88

Historical Notes 100

5 Data Compression 103

5.1 Examples of Codes 103

5.2 Kraft Inequality 107

5.3 Optimal Codes 110

5.4 Bounds on the Optimal Code Length 112

5.5 Kraft Inequality for Uniquely Decodable Codes 115

5.6 Huffman Codes 118

5.7 Some Comments on Huffman Codes 120

5.8 Optimality of Huffman Codes 123

5.9 Shannon–Fano–Elias Coding 127

5.10 Competitive Optimality of the Shannon Code 130

5.11 Generation of Discrete Distributions from Fair Coins 134

Summary 141

Problems 142

Historical Notes 157

6 Gambling and Data Compression 159

6.1 The Horse Race 159

6.2 Gambling and Side Information 164

6.3 Dependent Horse Races and Entropy Rate 166

6.4 The Entropy of English 168

6.5 Data Compression and Gambling 171

6.6 Gambling Estimate of the Entropy of English 173

Summary 175

Problems 176

Historical Notes 182

7 Channel Capacity 183

7.1 Examples of Channel Capacity 184

7.1.1 Noiseless Binary Channel 184

7.1.2 Noisy Channel with Nonoverlapping Outputs 185

7.1.3 Noisy Typewriter 186

7.1.4 Binary Symmetric Channel 187

7.1.5 Binary Erasure Channel 188

7.2 Symmetric Channels 189

7.3 Properties of Channel Capacity 191

7.4 Preview of the Channel Coding Theorem 191

7.5 Definitions 192

7.6 Jointly Typical Sequences 195

7.7 Channel Coding Theorem 199

7.8 Zero-Error Codes 205

7.9 Fano’s Inequality and the Converse to the Coding Theorem 206

7.10 Equality in the Converse to the Channel Coding Theorem 208

7.11 Hamming Codes 210

7.12 Feedback Capacity 216

7.13 Source–Channel Separation Theorem 218

Summary 222

Problems 223

Historical Notes 240

8 Differential Entropy 243

8.1 Definitions 243

8.2 AEP for Continuous Random Variables 245

8.3 Relation of Differential Entropy to Discrete Entropy 247

8.4 Joint and Conditional Differential Entropy 249

8.5 Relative Entropy and Mutual Information 250

8.6 Properties of Differential Entropy, Relative Entropy, and Mutual Information 252

Summary 256

Problems 256

Historical Notes 259

9 Gaussian Channel 261

9.1 Gaussian Channel: Definitions 263

9.2 Converse to the Coding Theorem for Gaussian Channels 268

9.3 Bandlimited Channels 270

9.4 Parallel Gaussian Channels 274

9.5 Channels with Colored Gaussian Noise 277

9.6 Gaussian Channels with Feedback 280

Summary 289

Problems 290

Historical Notes 299

10 Rate Distortion Theory 301

10.1 Quantization 301

10.2 Definitions 303

10.3 Calculation of the Rate Distortion Function 307

10.3.1 Binary Source 307

10.3.2 Gaussian Source 310

10.3.3 Simultaneous Description of Independent Gaussian Random Variables 312

10.4 Converse to the Rate Distortion Theorem 315

10.5 Achievability of the Rate Distortion Function 318

10.6 Strongly Typical Sequences and Rate Distortion 325

10.7 Characterization of the Rate Distortion Function 329

10.8 Computation of Channel Capacity and the Rate Distortion Function 332

Summary 335

Problems 336

Historical Notes 345

11 Information Theory and Statistics 347

11.1 Method of Types 347

11.2 Law of Large Numbers 355

11.3 Universal Source Coding 357

11.4 Large Deviation Theory 360

11.5 Examples of Sanov’s Theorem 364

11.6 Conditional Limit Theorem 366

11.7 Hypothesis Testing 375

11.8 Chernoff–Stein Lemma 380

11.9 Chernoff Information 384

11.10 Fisher Information and the Cramér–Rao Inequality 392

Summary 397

Problems 399

Historical Notes 408

12 Maximum Entropy 409

12.1 Maximum Entropy Distributions 409

12.2 Examples 411

12.3 Anomalous Maximum Entropy Problem 413

12.4 Spectrum Estimation 415

12.5 Entropy Rates of a Gaussian Process 416

12.6 Burg’s Maximum Entropy Theorem 417

Summary 420

Problems 421

Historical Notes 425

13 Universal Source Coding 427

13.1 Universal Codes and Channel Capacity 428

13.2 Universal Coding for Binary Sequences 433

13.3 Arithmetic Coding 436

13.4 Lempel–Ziv Coding 440

13.4.1 Sliding Window Lempel–Ziv Algorithm 441

13.4.2 Tree-Structured Lempel–Ziv Algorithms 442

13.5 Optimality of Lempel–Ziv Algorithms 443

13.5.1 Sliding Window Lempel–Ziv Algorithms 443

13.5.2 Optimality of Tree-Structured Lempel–Ziv Compression 448

Summary 456

Problems 457

Historical Notes 461

14 Kolmogorov Complexity 463

14.1 Models of Computation 464

14.2 Kolmogorov Complexity: Definitions and Examples 466

14.3 Kolmogorov Complexity and Entropy 473

14.4 Kolmogorov Complexity of Integers 475

14.5 Algorithmically Random and Incompressible Sequences 476

14.6 Universal Probability 480

14.7 Kolmogorov complexity 482

14.8 Ω 484

14.9 Universal Gambling 487

14.10 Occam’s Razor 488

14.11 Kolmogorov Complexity and Universal Probability 490

14.12 Kolmogorov Sufficient Statistic 496

14.13 Minimum Description Length Principle 500

Summary 501

Problems 503

Historical Notes 507

15 Network Information Theory 509

15.1 Gaussian Multiple-User Channels 513

15.1.1 Single-User Gaussian Channel 513

15.1.2 Gaussian Multiple-Access Channel with m Users 514

15.1.3 Gaussian Broadcast Channel 515

15.1.4 Gaussian Relay Channel 516

15.1.5 Gaussian Interference Channel 518

15.1.6 Gaussian Two-Way Channel 519

15.2 Jointly Typical Sequences 520

15.3 Multiple-Access Channel 524

15.3.1 Achievability of the Capacity Region for the Multiple-Access Channel 530

15.3.2 Comments on the Capacity Region for the Multiple-Access Channel 532

15.3.3 Convexity of the Capacity Region of the Multiple-Access Channel 534

15.3.4 Converse for the Multiple-Access Channel 538

15.3.5 m-User Multiple-Access Channels 543

15.3.6 Gaussian Multiple-Access Channels 544

15.4 Encoding of Correlated Sources 549

15.4.1 Achievability of the Slepian–Wolf Theorem 551

15.4.2 Converse for the Slepian–Wolf Theorem 555

15.4.3 Slepian–Wolf Theorem for Many Sources 556

15.4.4 Interpretation of Slepian–Wolf Coding 557

15.5 Duality Between Slepian–Wolf Encoding and Multiple-Access Channels 558

15.6 Broadcast Channel 560

15.6.1 Definitions for a Broadcast Channel 563

15.6.2 Degraded Broadcast Channels 564

15.6.3 Capacity Region for the Degraded Broadcast Channel 565

15.7 Relay Channel 571

15.8 Source Coding with Side Information 575

15.9 Rate Distortion with Side Information 580

15.10 General Multiterminal Networks 587

Summary 594

Problems 596

Historical Notes 609

16 Information Theory and Portfolio Theory 613

16.1 The Stock Market: Some Definitions 613

16.2 Kuhn–Tucker Characterization of the Log-Optimal Portfolio 617

16.3 Asymptotic Optimality of the Log-Optimal Portfolio 619

16.4 Side Information and the Growth Rate 621

16.5 Investment in Stationary Markets 623

16.6 Competitive Optimality of the Log-Optimal Portfolio 627

16.7 Universal Portfolios 629

16.7.1 Finite-Horizon Universal Portfolios 631

16.7.2 Horizon-Free Universal Portfolios 638

16.8 Shannon–McMillan–Breiman Theorem (General AEP) 644

Summary 650

Problems 652

Historical Notes 655

17 Inequalities in Information Theory 657

17.1 Basic Inequalities of Information Theory 657

17.2 Differential Entropy 660

17.3 Bounds on Entropy and Relative Entropy 663

17.4 Inequalities for Types 665

17.5 Combinatorial Bounds on Entropy 666

17.6 Entropy Rates of Subsets 667

17.7 Entropy and Fisher Information 671

17.8 Entropy Power Inequality and Brunn–Minkowski Inequality 674

17.9 Inequalities for Determinants 679

17.10 Inequalities for Ratios of Determinants 683

Summary 686

Problems 686

Historical Notes 687

Bibliography 689

List of Symbols 723

Index 727

The latest edition of this classic is updated with new problem sets and material


The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory.

All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points.

The Second Edition features:
* Chapters reorganized to improve teaching
* 200 new problems
* New material on source coding, portfolio theory, and feedback capacity
* Updated references

Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.

There are no comments for this item.

to post a comment.