Reliability engineering and services / Dr. Tongdan Jin, Professor, Texas State University, USA.

By: Jin, Tongdan [author.]
Language: English Publisher: Hoboken, NJ, USA : John Wiley & Sons, Inc., 2019Description: 1 online resource (568 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9781119167044 (ePub); 9781119167037 (Adobe PDF)Subject(s): Reliability (Engineering)Genre/Form: Electronic books.DDC classification: 620.00452 LOC classification: TS173Online resources: Full text available at Wiley Online Library Click here to view
Contents:
Series Editor’s Foreword xxi Preface xxiii Acknowledgement xxv About the Companion Website xxvii 1 Basic Reliability Concepts and Models 1 1.1 Introduction 1 1.2 Reliability Definition and Hazard Rate 1 1.3 Mean Lifetime and Mean Residual Life 9 1.4 System Downtime and Availability 14 1.5 Discrete Random Variable for Reliability Modeling 15 1.6 Continuous Random Variable for Reliability Modeling 18 1.7 Bayesian Reliability Model 28 1.8 Markov Model and Poisson Process 30 References 34 Problems 35 2 Reliability Estimation with Uncertainty 41 2.1 Introduction 41 2.2 Reliability Block Diagram 41 2.3 Series Systems 43 2.4 Parallel Systems 47 2.5 Mixed Series and Parallel Systems 49 2.6 Systems with k-out-of-n:G Redundancy 55 2.7 Network Systems 58 2.8 Reliability Confidence Intervals 66 2.9 Reliability of Multistate Systems 68 2.10 Reliability Importance 71 References 78 Problems 81 3 Design and Optimization for Reliability 89 3.1 Introduction 89 3.2 Lifecycle Reliability Optimization 89 3.3 Reliability and Redundancy Allocation 95 3.4 Multiobjective Reliability–Redundancy Allocation 103 3.5 Failure-in-Time Based Design 108 3.6 Failure Rate Considering Uncertainty 115 3.7 Fault-Tree Method 118 3.8 Failure Mode, Effect, and Criticality Analysis 121 3.9 Case Study: Reliability Design for Six Sigma 123 References 127 Problems 129 4 Reliability Growth Planning 133 4.1 Introduction 133 4.2 Classification of Failures 133 4.3 Failure Mode Types 136 4.4 No Fault Found (NFF) Failures 138 4.5 Corrective Action Effectiveness 141 4.6 Reliability Growth Model 145 4.7 Reliability Growth and Demonstration Test 154 4.8 Lifecycle Reliability Growth Planning 159 4.9 Case Study 164 References 166 Problems 169 5 Accelerated Stress Testing and Economics 171 5.1 Introduction 171 5.2 Design of Accelerated Stress Test 171 5.3 Scale Acceleration Model and Usage Rate 178 5.4 Arrhenius Model 184 5.5 Eyring Model and Power Law Model 187 5.6 Semiparametric Acceleration Models 190 5.7 Highly Accelerated Stress Screening Testing 195 5.8 A Case Study for HASS Project 199 References 204 Problems 206 6 Renewal Theory and Superimposed Renewal 211 6.1 Introduction 211 6.2 Renewal Integral Equation 211 6.3 Exponential and Erlang Renewal 219 6.4 Generalized Exponential Renewal 221 6.5 Weibull Renewal with Decreasing Failure Rate 226 6.6 Weibull Renewal with Increasing Failure Rate 230 6.7 Renewal under Deterministic Fleet Expansion 239 6.8 Renewal under Stochastic Fleet Expansion 245 6.9 Case Study 248 References 252 Problems 255 7 Performance-Based Maintenance 259 7.1 Introduction 259 7.2 Corrective Maintenance 259 7.3 Preventive Maintenance 262 7.4 Condition-Based Maintenance 267 7.5 Inverse Gaussian Degradation Process 275 7.6 Non-Stationary Gaussian Degradation Process 278 7.7 Performance-Based Maintenance 285 7.8 Contracting for Performance-Based Logistics 293 7.9 Case Study – RUL Prediction of Electronics Equipment 295 Appendix 298 References 299 Problems 304 8 Warranty Models and Services 309 8.1 Introduction 309 8.2 Warranty Concept and Its Roles 309 8.3 Warranty Policy for Non-repairable Product 312 8.4 Warranty Models for Repairable Products 321 8.5 Warranty Service for Variable Installed Base 325 8.6 Warranty Service under Reliability Growth 329 8.7 Other Warranty Services 335 8.8 Case Study: Design for Warranty 340 References 343 Problems 346 9 Basic Spare Parts Inventory Models 349 9.1 Introduction 349 9.2 Overview of Inventory Model 349 9.3 Deterministic EOQ Model 352 9.4 The News vendor Model 357 9.5 The (q, r) Inventory System under Continuous Review 361 9.6 The (s, S, T) Policy under Periodic Review 368 9.7 Basic Supply Chain Systems 372 9.8 Spare Parts Demand Forecasting 377 References 383 Problems 387 10 Repairable Inventory System 391 10.1 Introduction 391 10.2 Characteristics of Repairable Inventory Systems 391 10.3 Single-Echelon Inventory with Uncapacitated Repair 396 10.4 Single-Echelon Inventory with Capacitated Repair 402 10.5 Repairable Inventory for a Finite Fleet Size 405 10.6 Single-Echelon Inventory with Emergency Repair 408 10.7 Repairable Inventory Planning under Fleet Expansion 412 10.8 Multi-echelon, Multi-item Repairable Inventory 417 10.9 Case Study: Teradyne’s Spare Parts Supply Chain 424 References 432 Problems 434 11 Reliability and Service Integration 439 11.1 Introduction 439 11.2 The Rise of Product-Service System 439 11.3 Allocation of Reliability and Inventory for a Static Fleet 444 11.4 Allocation of Reliability and Inventory under Fleet Expansion 451 11.5 Joint Allocation of Maintenance, Inventory, and Repair 458 11.6 Case Study: Supporting Wind Generation Using PBC 467 Appendix 470 References 475 Problems 479 12 Resilience Engineering and Management 481 12.1 Introduction 481 12.2 Resilience Concept and Measures 481 12.3 Disaster Resilience Models of Power Grid 489 12.4 Prevention, Survivability, and Recovery 500 12.5 Variable Generation System Model 508 12.6 Case Study: Design for Resilient Distribution Systems 512 References 516 Problems 520 Index 525
Summary: Offers a holistic approach to guiding product design, manufacturing, and after-sales support as the manufacturing industry transitions from a product-oriented model to service-oriented paradigm This book provides fundamental knowledge and best industry practices in reliability modelling, maintenance optimization, and service parts logistics planning. It aims to develop an integrated product-service system (IPSS) synthesizing design for reliability, performance-based maintenance, and spare parts inventory. It also presents a lifecycle reliability-inventory optimization framework where reliability, redundancy, maintenance, and service parts are jointly coordinated. Additionally, the book aims to report the latest advances in reliability growth planning, maintenance contracting and spares inventory logistics under non-stationary demand condition. Reliability Engineering and Service provides in-depth chapter coverage of topics such as: Reliability Concepts and Models; Mean and Variance of Reliability Estimates; Design for Reliability; Reliability Growth Planning; Accelerated Life Testing and Its Economics; Renewal Theory and Superimposed Renewals; Maintenance and Performance-Based Logistics; Warranty Service Models; Basic Spare Parts Inventory Models; Repairable Inventory Systems; Integrated Product-Service Systems (IPPS), and Resilience Modeling and Planning Guides engineers to design reliable products at a low cost Assists service engineers in providing superior after-sales support Enables managers to respond to the changing market and customer needs Uses end-of-chapter case studies to illustrate industry best practice Lifecycle approach to reliability, maintenance and spares provisioning Reliability Engineering and Service is an important book for graduate engineering students, researchers, and industry-based reliability practitioners and consultants.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Home library Call number Status Date due Barcode Item holds
EBOOK EBOOK COLLEGE LIBRARY
COLLEGE LIBRARY
LIC Gateway
620.00452 J5647 2019 (Browse shelf) Available CL-50501
Total holds: 0

ABOUT THE AUTHOR
Tongdan Jin, PhD, is an Associate Professor in the Ingram School of Engineering at Texas State University. He obtained his Ph.D. in Industrial and Systems Engineering, and MS in Electrical and Computer Engineering, both from Rutgers University. His BS in Electrical and Automation Engineering is from Shaanxi University of Science and Technology, Xian, China. Prior to his academic appointment, he has five-year reliability design and management experience in Teradyne Inc., Boston. He is a recipient of best papers in several international conferences, including Evans-McElroy best paper in 2014 Reliability and Maintainability Conference. He has authored and co-authored over 140 journal and conference papers in reliability modeling and optimization with applications in manufacturing and energy systems. His research has been sponsored by NSF, the US Department of Agriculture, and the US Department of Education. He is the member of IEEE, INFORMS and IISE.

Includes bibliographical references and index.

Series Editor’s Foreword xxi

Preface xxiii

Acknowledgement xxv

About the Companion Website xxvii

1 Basic Reliability Concepts and Models 1

1.1 Introduction 1

1.2 Reliability Definition and Hazard Rate 1

1.3 Mean Lifetime and Mean Residual Life 9

1.4 System Downtime and Availability 14

1.5 Discrete Random Variable for Reliability Modeling 15

1.6 Continuous Random Variable for Reliability Modeling 18

1.7 Bayesian Reliability Model 28

1.8 Markov Model and Poisson Process 30

References 34

Problems 35

2 Reliability Estimation with Uncertainty 41

2.1 Introduction 41

2.2 Reliability Block Diagram 41

2.3 Series Systems 43

2.4 Parallel Systems 47

2.5 Mixed Series and Parallel Systems 49

2.6 Systems with k-out-of-n:G Redundancy 55

2.7 Network Systems 58

2.8 Reliability Confidence Intervals 66

2.9 Reliability of Multistate Systems 68

2.10 Reliability Importance 71

References 78

Problems 81

3 Design and Optimization for Reliability 89

3.1 Introduction 89

3.2 Lifecycle Reliability Optimization 89

3.3 Reliability and Redundancy Allocation 95

3.4 Multiobjective Reliability–Redundancy Allocation 103

3.5 Failure-in-Time Based Design 108

3.6 Failure Rate Considering Uncertainty 115

3.7 Fault-Tree Method 118

3.8 Failure Mode, Effect, and Criticality Analysis 121

3.9 Case Study: Reliability Design for Six Sigma 123

References 127

Problems 129

4 Reliability Growth Planning 133

4.1 Introduction 133

4.2 Classification of Failures 133

4.3 Failure Mode Types 136

4.4 No Fault Found (NFF) Failures 138

4.5 Corrective Action Effectiveness 141

4.6 Reliability Growth Model 145

4.7 Reliability Growth and Demonstration Test 154

4.8 Lifecycle Reliability Growth Planning 159

4.9 Case Study 164

References 166

Problems 169

5 Accelerated Stress Testing and Economics 171

5.1 Introduction 171

5.2 Design of Accelerated Stress Test 171

5.3 Scale Acceleration Model and Usage Rate 178

5.4 Arrhenius Model 184

5.5 Eyring Model and Power Law Model 187

5.6 Semiparametric Acceleration Models 190

5.7 Highly Accelerated Stress Screening Testing 195

5.8 A Case Study for HASS Project 199

References 204

Problems 206

6 Renewal Theory and Superimposed Renewal 211

6.1 Introduction 211

6.2 Renewal Integral Equation 211

6.3 Exponential and Erlang Renewal 219

6.4 Generalized Exponential Renewal 221

6.5 Weibull Renewal with Decreasing Failure Rate 226

6.6 Weibull Renewal with Increasing Failure Rate 230

6.7 Renewal under Deterministic Fleet Expansion 239

6.8 Renewal under Stochastic Fleet Expansion 245

6.9 Case Study 248

References 252

Problems 255

7 Performance-Based Maintenance 259

7.1 Introduction 259

7.2 Corrective Maintenance 259

7.3 Preventive Maintenance 262

7.4 Condition-Based Maintenance 267

7.5 Inverse Gaussian Degradation Process 275

7.6 Non-Stationary Gaussian Degradation Process 278

7.7 Performance-Based Maintenance 285

7.8 Contracting for Performance-Based Logistics 293

7.9 Case Study – RUL Prediction of Electronics Equipment 295

Appendix 298

References 299

Problems 304

8 Warranty Models and Services 309

8.1 Introduction 309

8.2 Warranty Concept and Its Roles 309

8.3 Warranty Policy for Non-repairable Product 312

8.4 Warranty Models for Repairable Products 321

8.5 Warranty Service for Variable Installed Base 325

8.6 Warranty Service under Reliability Growth 329

8.7 Other Warranty Services 335

8.8 Case Study: Design for Warranty 340

References 343

Problems 346

9 Basic Spare Parts Inventory Models 349

9.1 Introduction 349

9.2 Overview of Inventory Model 349

9.3 Deterministic EOQ Model 352

9.4 The News vendor Model 357

9.5 The (q, r) Inventory System under Continuous Review 361

9.6 The (s, S, T) Policy under Periodic Review 368

9.7 Basic Supply Chain Systems 372

9.8 Spare Parts Demand Forecasting 377

References 383

Problems 387

10 Repairable Inventory System 391

10.1 Introduction 391

10.2 Characteristics of Repairable Inventory Systems 391

10.3 Single-Echelon Inventory with Uncapacitated Repair 396

10.4 Single-Echelon Inventory with Capacitated Repair 402

10.5 Repairable Inventory for a Finite Fleet Size 405

10.6 Single-Echelon Inventory with Emergency Repair 408

10.7 Repairable Inventory Planning under Fleet Expansion 412

10.8 Multi-echelon, Multi-item Repairable Inventory 417

10.9 Case Study: Teradyne’s Spare Parts Supply Chain 424

References 432

Problems 434

11 Reliability and Service Integration 439

11.1 Introduction 439

11.2 The Rise of Product-Service System 439

11.3 Allocation of Reliability and Inventory for a Static Fleet 444

11.4 Allocation of Reliability and Inventory under Fleet Expansion 451

11.5 Joint Allocation of Maintenance, Inventory, and Repair 458

11.6 Case Study: Supporting Wind Generation Using PBC 467

Appendix 470

References 475

Problems 479

12 Resilience Engineering and Management 481

12.1 Introduction 481

12.2 Resilience Concept and Measures 481

12.3 Disaster Resilience Models of Power Grid 489

12.4 Prevention, Survivability, and Recovery 500

12.5 Variable Generation System Model 508

12.6 Case Study: Design for Resilient Distribution Systems 512

References 516

Problems 520

Index 525

Offers a holistic approach to guiding product design, manufacturing, and after-sales support as the manufacturing industry transitions from a product-oriented model to service-oriented paradigm

This book provides fundamental knowledge and best industry practices in reliability modelling, maintenance optimization, and service parts logistics planning. It aims to develop an integrated product-service system (IPSS) synthesizing design for reliability, performance-based maintenance, and spare parts inventory. It also presents a lifecycle reliability-inventory optimization framework where reliability, redundancy, maintenance, and service parts are jointly coordinated. Additionally, the book aims to report the latest advances in reliability growth planning, maintenance contracting and spares inventory logistics under non-stationary demand condition.

Reliability Engineering and Service provides in-depth chapter coverage of topics such as: Reliability Concepts and Models; Mean and Variance of Reliability Estimates; Design for Reliability; Reliability Growth Planning; Accelerated Life Testing and Its Economics; Renewal Theory and Superimposed Renewals; Maintenance and Performance-Based Logistics; Warranty Service Models; Basic Spare Parts Inventory Models; Repairable Inventory Systems; Integrated Product-Service Systems (IPPS), and Resilience Modeling and Planning

Guides engineers to design reliable products at a low cost
Assists service engineers in providing superior after-sales support
Enables managers to respond to the changing market and customer needs
Uses end-of-chapter case studies to illustrate industry best practice
Lifecycle approach to reliability, maintenance and spares provisioning
Reliability Engineering and Service is an important book for graduate engineering students, researchers, and industry-based reliability practitioners and consultants.

600-699 620

Description based on print version record and CIP data provided by publisher.

There are no comments for this item.

to post a comment.