Thermodynamics for engineers / Kenneth A. Kroos, Merle C. Potter.
By: Kroos, Kenneth A
Publisher: Mason, OH : Cengage Learning, 2014Edition: Si EdDescription: pages cmContent type: text Media type: unmediated Carrier type: volumeISBN: 9781133112877Item type | Current location | Home library | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
BOOK | COLLEGE LIBRARY | COLLEGE LIBRARY SUBJECT REFERENCE | 621.4021 K926 2015 (Browse shelf) | Available | CITU-CL-46521 |
PART I. CONCEPTS AND BASIC LAWS. 1. Basic Concepts and Systems of Units. 1.1. Introduction. 1.2. Dimensions and Units. 1.3. Properties, Processes, and Equilibrium. 1.4. Pressure. 1.5. Temperature. 1.6. Energy. 1.7. Summary. 2. Properties of Pure Substances. 2.1. Phases of a Substance. 2.2. Internal Energy and Enthalpy. 2.3. Refrigerants. 2.4. Ideal Gas Law. 2.5. Real Gas Equations of State. 2.6. Internal Energy and Enthalpy of Ideal Gases. 2.7. Specific Heats of Liquids and Solids. 2.8. Summary. 3. The First Law for Systems. 3.1. Work. 3.2. Heat Transfer. 3.3. Problem Solving Method. 3.4. The First Law Applied to Systems. 3.5. The First Law Applied to Various Processes. 3.6. Cycles. 3.7. Summary. 4. The First Law Applied to Control Volumes. 4.1. The Conservation of Mass for Control Volumes. 4.2. The First Law for Control Volumes. 4.3. Unsteady Flow. 4.4. Devices Combined into Cycles. 4.5. Summary. 5. The Second Law of Thermodynamics. 5.1. Second Law Concepts. 5.2. Statements of The Second Law of Thermodynamics. 5.3. Cycle Performance Parameters. 5.4. The Carnot Cycle. 5.5. Summary. 6. Entropy. 6.1. Inequality of Clausius. 6.2. Entropy. 6.3. of an Entropy Change in Substances. 6.4. Entropy Changes for a Control Volume. 6.5. Isentropic Efficiency. 6.6. Exergy (Availability) and Irreversibility. 6.7. Summary. 7. Thermodynamic Relations. 7.1. The Maxwell Relations. 7.2. The Clapeyron Equation. 7.3. Relationships for Internal Energy, Enthalpy, Entropy, and Specific Heats. 7.4. The Joule-Thompson Coefficient. 7.5. Real Gas Effects. 7.6. Summary. PART II. APPLICATIONS. 8. The Rankine Power Cycle. 8.1. Energy Sustainability. 8.2. The Rankine Cycle. 8.3. Modified Rankine Cycles. 8.4. Cogeneration Cycles. 8.5. Losses in Power Plants. 8.6. Summary. 9. Gas Power Cycles. 9.1. Air-Standard Analysis. 9.2. Reciprocating Engine Terminology. 9.3. The Otto Cycle. 9.4. The Diesel Cycle. 9.5. Other Gas Power Cycles. 9.6. Brayton Cycle. 9.7. The Combined Brayton-Rankine Cycle. 9.8. Summary. 10. Refrigeration Cycles. 10.1. The Vapor Compression-Refrigeration Cycle. 10.2. Cascade Refrigeration Systems. 10.3. Absorption Refrigeration. 10.4. Gas Refrigeration Systems. 10.5. Summary. 11. Mixtures and Psychrometrics. 11.1. Gas Mixtures. 11.2. Air-Vapor Mixture and Psychrometry. 11.3. Air-Conditioning Processes. 11.4. Summary. 12. Combustion. 12.1. Introduction. 12.2. Combustion Reactions. 12.3. The Enthalpy of Formation and the Enthalpy of Combustion. 12.4. Adiabatic Flame Temperature. 12.5. Actual Flame Temperature. 12.6. Equilibrium Reactions. 12.7. Summary. PART III, CONTEMPORARY TOPICS. 13. Alternative Energy Conversion. 13.1. Biofuels. 13.2. Solar Energy. 13.3. Fuel Cells. 13.4. Thermoelectric Generators. 13.5. Geothermal Energy. 13.6. Wind Energy. 13.7. Ocean and Hydroelectric Energy. 13.8. Summary. 14. Thermodynamics of Living Organisms. 14.1. Energy Conversion in Plants. 14.2. Energy Conversion in Animals. 14.3. Generation of Biological Work. 14.4. Summary. Appendix. A Conversion of Units. B Material Properties. C Steam Tables - SI Units. Steam Tables - English Units. D Thermodynamic Properties of R134a- SI Units. Thermodynamic Properties of R134a - English Units. E Properties of Ammonia- SI Units. F Ideal-Gas Tables - SI Units. G Psychrometric Chart. H Compressibility Chart. I Enthalpy Departure Charts. J Entropy Departure Charts. Index.
Features
The mathematics (calculus) needed has been kept to a minimum so that all students can follow the developments.
Learning outcomes are listed at the start of each chapter and identified as completed at relevant places in the text, followed by a summary at the end of each chapter.
Short concept quizzes included at the completion of each outcome to test the students.
Real-world parallels are drawn at appropriate places to help students relate to abstract concepts.
Equal emphasis is laid on qualitative and quantitative coverage, theory and application, and core concepts and current trends.
Solved examples illustrate clear problem solving methodology and focus on real-world applications of thermodynamics concepts.
Sustainability and Bio-related themes will run throughout the text making the text more relevant to current day students.
FE Type problems will be included at the end of each chapter, these will help students prepare for certification exams and aid instructors in short quizzes
End-of-Chapter exercises will serve to check the students' understanding and provide instructors with an extensive set of homework and exam questions.
End-of-Chapter exercises will serve to check the students? understanding and provide instructors with an extensive set of homework and exam questions.
There are no comments for this item.