Geophysics for the mineral exploration geoscientist / Michael Dentith, The University of Western Australia, Perth, Stephen T. Mudge, Vector Reserach Pty Ltd, Perth.

By: Dentith, M. C. (Michael C.)
Contributor(s): Mudge, Stephen T, 1952-
Language: English Publisher: Cambridge, United Kingdom : Cambridge University Press, 2014Description: xvii, 438 pages : color illustrations ; 28 cmContent type: text Media type: unmediated Carrier type: volumeISBN: 9780521809511 (hardback); 0521809517 (hardback)Subject(s): Geophysics | Earth scientistsDDC classification: 550 LOC classification: QC807 | .D46 2014
Contents:
CONTENTS List of online appendices ix List of figure credits xi Preface xv Acknowledgements xvi 1 Introduction 1 1.1 Physical versus chemical characterisation of the geological environment 2 1.2 Geophysical methods in exploration and mining 3 1.2.1 Airborne, ground and in-ground surveys 3 1.2.2 Geophysical methods and mineral deposits 4 1.2.3 The cost of geophysics 5 1.3 About this book 6 Further reading 11 2 Geophysical data acquisition, processing and interpretation 13 2.1 Introduction 13 2.2 Types of geophysical measurement 14 2.2.1 Absolute and relative measurements 14 2.2.2 Scalars and vectors 15 2.2.3 Gradients 15 2.3 The nature of geophysical responses 16 2.4 Signal and noise 17 2.4.1 Environmental noise 18 2.4.2 Methodological noise 22 2.5 Survey objectives 23 2.5.1 Geological mapping 23 2.5.2 Anomaly detection 24 2.5.3 Anomaly de fi nition 25 2.6 Data acquisition 25 2.6.1 Sampling and aliasing 25 2.6.2 System footprint 27 2.6.3 Survey design 27 2.6.4 Feature detection 31 2.7 Data processing 32 2.7.1 Reduction of data 32 2.7.2 Interpolation of data 34 2.7.3 Merging of datasets 38 2.7.4 Enhancement of data 38 2.8 Data display 48 2.8.1 Types of data presentation 48 2.8.2 Image processing 51 2.9 Data interpretation ? general 58 2.9.1 Interpretation fundamentals 59 2.9.2 Removing the regional response 60 2.10 Data interpretation ? qualitative analysis 63 2.10.1 Spatial analysis of 2D data 63 2.10.2 Geophysical image to geological map 67 2.11 Data interpretation ? quantitative analysis 70 2.11.1 Geophysical models of the subsurface 70 2.11.2 Forward and inverse modelling 74 2.11.3 Modelling strategy 78 2.11.4 Non-uniqueness 79 Summary 81 Review questions 82 Further reading 82 3 Gravity and magnetic methods 85 3.1 Introduction 85 3.2 Gravity and magnetic fi elds 86 3.2.1 Mass and gravity 87 3.2.2 Gravity anomalies 88 3.2.3 Magnetism and magnetic fi elds 89 3.2.4 Magnetic anomalies 93 3.3 Measurement of the Earth ? s gravity fi eld 94 3.3.1 Measuring relative gravity 96 3.3.2 Measuring gravity gradients 98 3.3.3 Gravity survey practice 98 3.4 Reduction of gravity data 99 3.4.1 Velocity effect 99 3.4.2 Tidal effect 99 3.4.3 Instrument drift 100 3.4.4 Variations in gravity due to the Earth ? s rotation and shape 100 3.4.5 Variations in gravity due to height and topography 102 3.4.6 Summary of gravity data reduction 106 3.4.7 Example of the reduction of ground gravity data 106 3.5 Measurement of the Earth?s magnetic fi eld 106 3.5.1 The geomagnetic fi eld 109 3.5.2 Measuring magnetic fi eld strength 112 3.5.3 Magnetic survey practice 114 3.6 Reduction of magnetic data 116 3.6.1 Temporal variations in fi eld strength 116 3.6.2 Regional variations in fi eld strength 117 3.6.3 Terrain clearance effects 117 3.6.4 Levelling 117 3.6.5 Example of the reduction of aeromagnetic data 117 3.7 Enhancement and display of gravity and magnetic data 118 3.7.1 Choice of enhancements 122 3.7.2 Reduction-to-pole and pseudogravity transforms 123 3.7.3 Wavelength fi lters 124 3.7.4 Gradients/derivatives 125 3.8 Density in the geological environment 127 3.8.1 Densities of low-porosity rocks 127 3.8.2 Densities of porous rocks 129 3.8.3 Density and lithology 130 3.8.4 Changes in density due to metamorphism and alteration 131 3.8.5 Density of the near-surface 133 3.8.6 Density of mineralised environments 133 3.8.7 Measuring density 134 3.8.8 Analysis of density data 134 3.9 Magnetism in the geological environment 135 3.9.1 Magnetic properties of minerals 136 3.9.2 Magnetic properties of rocks 138 3.9.3 Magnetism of igneous rocks 140 3.9.4 Magnetism of sedimentary rocks 144 3.9.5 Magnetism of metamorphosed and altered rocks 145 3.9.6 Magnetism of the near-surface 151 3.9.7 Magnetism of mineralised environments 151 3.9.8 Magnetic property measurements and their analysis 155 3.9.9 Correlations between density and magnetism 159 3.10 Interpretation of gravity and magnetic data 160 3.10.1 Gravity and magnetic anomalies and their sources 160 3.10.2 Analysis of gravity and magnetic maps 163 3.10.3 Interpretation pitfalls 164 3.10.4 Estimating depth-to-source 165 3.10.5 Modelling source geometry 167 3.10.6 Modelling pitfalls 167 3.11 Examples of gravity and magnetic data from mineralised terrains 169 3.11.1 Regional removal and gravity mapping of palaeochannels hosting placer gold 169 3.11.2 Modelling the magnetic response associated with the Wallaby gold deposit 172 3.11.3 Magnetic responses from an Archaean granitoid ? greenstone terrain: Kirkland Lake area 173 3.11.4 Magnetic responses in a Phanerozoic Orogenic terrain: Lachlan Foldbelt 179 3.11.5 Magnetic and gravity responses from mineralised environments 186 Summary 188 Review questions 190 Further reading 190 4 Radiometric method 193 4.1 Introduction 193 4.2 Radioactivity 194 4.2.1 Radioactive decay 194 4.2.2 Half-life and equilibrium 195 4.2.3 Interaction of radiation and matter 196 4.2.4 Measurement units 197 4.2.5 Sources of radioactivity in the natural environment 198 4.3 Measurement of radioactivity in the fi eld 199 4.3.1 Statistical noise 199 4.3.2 Radiation detectors 201 4.3.3 Survey practice 204 4.4 Reduction of radiometric data 205 4.4.1 Instrument effects 205 4.4.2 Random noise 206 4.4.3 Background radiation 207 4.4.4 Atmospheric radon 207 4.4.5 Channel interaction 208 4.4.6 Height attenuation 208 4.4.7 Analytical calibration 208 4.5 Enhancement and display of radiometric data 209 4.5.1 Single-channel displays 209 4.5.2 Multichannel ternary displays 209 4.5.3 Channel ratios 210 4.5.4 Multivariant methods 210 4.6 Radioelements in the geological environment 210 4.6.1 Disequilibrium in the geological environment 212 4.6.2 Potassium, uranium and thorium in igneous rocks 216 4.6.3 Potassium, uranium and thorium in altered and metamorphosed rocks 216 4.6.4 Potassium, uranium and thorium in sedimentary rocks 217 4.6.5 Sur fi cial processes and K, U and Th in the overburden 217 4.6.6 Potassium, uranium and thorium in mineralised environments 219 4.7 Interpretation of radiometric data 220 4.7.1 Interpretation procedure 222 4.7.2 Interpretation pitfalls 222 4.7.3 Responses of mineralised environments 223 4.7.4 Example of geological mapping in a fold and thrust belt: Flinders Ranges 227 4.7.5 Interpretation of γ -logs 229 Summary 232 Review questions 232 Further reading 233 5 Electrical and electromagnetic methods 235 5.1 Introduction 235 5.2 Electricity and magnetism 237 5.2.1 Fundamentals of electricity 237 5.2.2 Fundamentals of electromagnetism 243 5.2.3 Electromagnetic waves 246 5.3 Electrical properties of the natural environment 247 5.3.1 Conductivity/resistivity 247 5.3.2 Polarisation 253 5.3.3 Dielectric properties 255 5.3.4 Properties of the near-surface 255 5.4 Measurement of electrical and electromagnetic phenomena 257 5.4.1 Electrodes 258 5.4.2 Electrical and electromagnetic noise 258 5.5 Self-potential method 260 5.5.1 Sources of natural electrical potentials 260 5.5.2 Measurement of self-potential 262 5.5.3 Display and interpretation of SP data 263 5.5.4 Examples of SP data from mineral deposits 265 5.6 Resistivity and induced polarisation methods 266 5.6.1 Electric fi elds and currents in the subsurface 268 5.6.2 Resistivity 269 5.6.3 Induced polarisation 271 5.6.4 Measurement of resistivity/IP 273 5.6.5 Resistivity/IP survey practice 275 5.6.6 Display, interpretation and examples of resistivity/IP data 278 5.6.7 Interpretation pitfalls 289 5.6.8 Resistivity/IP logging 293 5.6.9 Applied potential/mise-à-la-masse method 294 5.7 Electromagnetic methods 299 5.7.1 Principles of electromagnetic surveying 299 5.7.2 Subsurface conductivity and EM responses 306 5.7.3 Acquisition of EM data 312 5.7.4 Processing and display of EM data 316 5.7.5 Interpretation of EM data 318 5.7.6 Interpretation pitfalls 326 5.7.7 Examples of EM data from mineral deposits 328 5.8 Downhole electromagnetic surveying 330 5.8.1 Acquisition of DHEM data 330 5.8.2 Display and interpretation of DHEM data 333 5.8.3 Examples of DHEM responses from mineral deposits 337 5.8.4 Induction logging 339 5.9 Airborne electromagnetic surveying 339 5.9.1 Acquisition of AEM data 340 5.9.2 AEM systems 342 5.9.3 AEM survey practice 344 5.9.4 Display and interpretation of AEM data 345 5.9.5 Examples of AEM data from mineralised terrains 345 Summary 347 Review questions 348 Further reading 349 6 Seismic method 351 6.1 Introduction 351 6.2 Seismic waves 352 6.2.1 Elasticity and seismic velocity 353 6.2.2 Body waves 353 6.2.3 Surface waves 354 6.3 Propagation of body waves through the subsurface 354 6.3.1 Wavefronts and rays 354 6.3.2 Fresnel volume 355 6.3.3 Seismic attenuation 356 6.3.4 Effects of elastic property discontinuities 357 6.4 Acquisition and display of seismic data 363 6.4.1 Seismic sources 363 6.4.2 Seismic detectors 364 6.4.3 Displaying seismic data 364 6.5 Seismic re fl ection method 366 6.5.1 Data acquisition 367 6.5.2 Data processing 369 6.6 Variations in seismic properties in the geological environment 383 6.6.1 Seismic properties of common rock types 384 6.6.2 Effects of temperature and pressure 387 6.6.3 Effects of metamorphism, alteration and deformation 388 6.6.4 Seismic properties of mineralisation 389 6.6.5 Seismic properties of near-surface environments 390 6.6.6 Anisotropy 391 6.6.7 Absorption 391 6.6.8 Summary of geological controls on seismic properties 392 6.6.9 Measuring seismic properties 392 6.7 Interpretation of seismic re fl ection data 393 6.7.1 Resolution 393 6.7.2 Quantitative interpretation 396 6.7.3 Interpretation pitfalls 397 6.7.4 Examples of seismic re fl ection data from mineralised terrains 398 6.8 In-seam and downhole seismic surveys 401 6.8.1 In-seam surveys 402 6.8.2 Tomographic surveys 403 Summary 405 Review questions 406 Further reading 406 References 408 Index 426
Summary: "Providing a balance between principles and practice, this state-of-the-art overview of geophysical methods takes readers from the basic physical phenomena, through the acquisition and processing of data, to the creation of geological models of the subsurface and data interpretation to find hidden mineral deposits. Detailed descriptions of all the commonly used geophysical methods are given, including gravity, magnetic, radiometric, electrical, electromagnetic and seismic methods. Each technique is described in a consistent way and without complex mathematics. Emphasising extraction of maximum geological information from geophysical data, the book also explains petrophysics, data modelling and common interpretation pitfalls. Packed with full-colour figures, also available online, the text is supported by selected examples from around the world, including all the major deposit types. Designed for advanced undergraduate and graduate courses in minerals geoscience, this is also a valuable reference for professionals in the mining industry wishing to make greater use of geophysical methods." --Publisher's description.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Home library Call number Status Date due Barcode Item holds
BOOK BOOK COLLEGE LIBRARY
COLLEGE LIBRARY
SUBJECT REFERENCE
550 D434 2014 (Browse shelf) Available CITU-CL-46466
Total holds: 0

Includes bibliographical references and index.

CONTENTS
List of online appendices ix
List of figure credits xi
Preface xv
Acknowledgements xvi
1
Introduction
1
1.1
Physical versus chemical characterisation of the
geological environment
2
1.2
Geophysical methods in exploration and mining
3
1.2.1
Airborne, ground and in-ground surveys
3
1.2.2
Geophysical methods and mineral deposits
4
1.2.3
The cost of geophysics
5
1.3
About this book
6
Further reading 11
2
Geophysical data acquisition, processing
and interpretation
13
2.1
Introduction
13
2.2
Types of geophysical measurement
14
2.2.1
Absolute and relative measurements
14
2.2.2
Scalars and vectors
15
2.2.3
Gradients
15
2.3
The nature of geophysical responses
16
2.4
Signal and noise
17
2.4.1
Environmental noise
18
2.4.2
Methodological noise
22
2.5
Survey objectives
23
2.5.1
Geological mapping
23
2.5.2
Anomaly detection
24
2.5.3
Anomaly de
fi
nition
25
2.6
Data acquisition
25
2.6.1
Sampling and aliasing
25
2.6.2
System footprint
27
2.6.3
Survey design
27
2.6.4
Feature detection
31
2.7
Data processing
32
2.7.1
Reduction of data
32
2.7.2
Interpolation of data
34
2.7.3
Merging of datasets
38
2.7.4
Enhancement of data
38
2.8
Data display
48
2.8.1
Types of data presentation
48
2.8.2
Image processing
51
2.9
Data interpretation
?
general
58
2.9.1
Interpretation fundamentals
59
2.9.2
Removing the regional response
60
2.10
Data interpretation
?
qualitative analysis
63
2.10.1
Spatial analysis of 2D data
63
2.10.2
Geophysical image to geological map
67
2.11
Data interpretation
?
quantitative analysis
70
2.11.1
Geophysical models of the subsurface
70
2.11.2
Forward and inverse modelling
74
2.11.3
Modelling strategy
78
2.11.4
Non-uniqueness
79
Summary 81
Review questions 82
Further reading 82
3
Gravity and magnetic methods
85
3.1
Introduction
85
3.2
Gravity and magnetic
fi
elds
86
3.2.1
Mass and gravity
87
3.2.2
Gravity anomalies
88
3.2.3
Magnetism and magnetic
fi
elds
89
3.2.4
Magnetic anomalies
93
3.3
Measurement of the Earth
?
s gravity
fi
eld
94
3.3.1
Measuring relative gravity
96
3.3.2
Measuring gravity gradients
98
3.3.3
Gravity survey practice
98
3.4
Reduction of gravity data
99
3.4.1
Velocity effect
99
3.4.2
Tidal effect
99
3.4.3
Instrument drift
100
3.4.4
Variations in gravity due to the Earth
?
s
rotation and shape
100
3.4.5
Variations in gravity due to height and
topography
102
3.4.6
Summary of gravity data reduction
106
3.4.7
Example of the reduction of ground gravity data
106

3.5 Measurement of the Earth?s magnetic
fi
eld
106
3.5.1
The geomagnetic
fi
eld
109
3.5.2
Measuring magnetic
fi
eld strength
112
3.5.3
Magnetic survey practice
114
3.6
Reduction of magnetic data
116
3.6.1
Temporal variations in
fi
eld strength
116
3.6.2
Regional variations in
fi
eld strength
117
3.6.3
Terrain clearance effects
117
3.6.4
Levelling
117
3.6.5
Example of the reduction of
aeromagnetic data
117
3.7
Enhancement and display of gravity and
magnetic data
118
3.7.1
Choice of enhancements
122
3.7.2
Reduction-to-pole and pseudogravity
transforms
123
3.7.3
Wavelength
fi
lters
124
3.7.4
Gradients/derivatives
125
3.8
Density in the geological environment
127
3.8.1
Densities of low-porosity rocks
127
3.8.2
Densities of porous rocks
129
3.8.3
Density and lithology
130
3.8.4
Changes in density due to metamorphism
and alteration
131
3.8.5
Density of the near-surface
133
3.8.6
Density of mineralised environments
133
3.8.7
Measuring density
134
3.8.8
Analysis of density data
134
3.9
Magnetism in the geological environment
135
3.9.1
Magnetic properties of minerals
136
3.9.2
Magnetic properties of rocks
138
3.9.3
Magnetism of igneous rocks
140
3.9.4
Magnetism of sedimentary rocks
144
3.9.5
Magnetism of metamorphosed and
altered rocks
145
3.9.6
Magnetism of the near-surface
151
3.9.7
Magnetism of mineralised environments
151
3.9.8
Magnetic property measurements and their
analysis
155
3.9.9
Correlations between density and magnetism
159
3.10
Interpretation of gravity and magnetic data
160
3.10.1
Gravity and magnetic anomalies and their
sources
160
3.10.2
Analysis of gravity and magnetic maps
163
3.10.3
Interpretation pitfalls
164
3.10.4
Estimating depth-to-source
165
3.10.5
Modelling source geometry
167
3.10.6
Modelling pitfalls
167
3.11
Examples of gravity and magnetic data from
mineralised terrains
169
3.11.1
Regional removal and gravity mapping of
palaeochannels hosting placer gold
169
3.11.2
Modelling the magnetic response associated
with the Wallaby gold deposit
172
3.11.3
Magnetic responses from an Archaean granitoid
?
greenstone terrain: Kirkland Lake area
173
3.11.4
Magnetic responses in a Phanerozoic Orogenic
terrain: Lachlan Foldbelt
179
3.11.5
Magnetic and gravity responses from
mineralised environments
186
Summary 188
Review questions 190
Further reading 190
4
Radiometric method
193
4.1
Introduction
193
4.2
Radioactivity
194
4.2.1
Radioactive decay
194
4.2.2
Half-life and equilibrium
195
4.2.3
Interaction of radiation and matter
196
4.2.4
Measurement units
197
4.2.5
Sources of radioactivity in the natural
environment
198
4.3
Measurement of radioactivity in the
fi
eld
199
4.3.1
Statistical noise
199
4.3.2
Radiation detectors
201
4.3.3
Survey practice
204
4.4
Reduction of radiometric data
205
4.4.1
Instrument effects
205
4.4.2
Random noise
206
4.4.3
Background radiation
207
4.4.4
Atmospheric radon
207
4.4.5
Channel interaction
208
4.4.6
Height attenuation
208
4.4.7
Analytical calibration
208
4.5
Enhancement and display of radiometric data
209
4.5.1
Single-channel displays
209
4.5.2
Multichannel ternary displays
209
4.5.3
Channel ratios
210
4.5.4
Multivariant methods
210
4.6
Radioelements in the geological environment
210
4.6.1
Disequilibrium in the geological environment
212
4.6.2
Potassium, uranium and thorium in
igneous rocks
216
4.6.3
Potassium, uranium and thorium in altered
and metamorphosed rocks
216
4.6.4
Potassium, uranium and thorium in
sedimentary rocks
217
4.6.5
Sur
fi
cial processes and K, U and Th in the
overburden
217
4.6.6
Potassium, uranium and thorium in
mineralised environments
219
4.7
Interpretation of radiometric data
220
4.7.1
Interpretation procedure
222
4.7.2
Interpretation pitfalls
222
4.7.3
Responses of mineralised environments
223
4.7.4
Example of geological mapping in a fold and
thrust belt: Flinders Ranges
227
4.7.5
Interpretation of
γ
-logs
229

Summary 232
Review questions 232
Further reading 233
5
Electrical and electromagnetic methods
235
5.1
Introduction
235
5.2
Electricity and magnetism
237
5.2.1
Fundamentals of electricity
237
5.2.2
Fundamentals of electromagnetism
243
5.2.3
Electromagnetic waves
246
5.3
Electrical properties of the natural environment
247
5.3.1
Conductivity/resistivity
247
5.3.2
Polarisation
253
5.3.3
Dielectric properties
255
5.3.4
Properties of the near-surface
255
5.4
Measurement of electrical and electromagnetic
phenomena
257
5.4.1
Electrodes
258
5.4.2
Electrical and electromagnetic noise
258
5.5
Self-potential method
260
5.5.1
Sources of natural electrical potentials
260
5.5.2
Measurement of self-potential
262
5.5.3
Display and interpretation of SP data
263
5.5.4
Examples of SP data from mineral deposits
265
5.6
Resistivity and induced polarisation methods
266
5.6.1
Electric
fi
elds and currents in the subsurface
268
5.6.2
Resistivity
269
5.6.3
Induced polarisation
271
5.6.4
Measurement of resistivity/IP
273
5.6.5
Resistivity/IP survey practice
275
5.6.6
Display, interpretation and examples of
resistivity/IP data
278
5.6.7
Interpretation pitfalls
289
5.6.8
Resistivity/IP logging
293
5.6.9
Applied potential/mise-à-la-masse method
294
5.7
Electromagnetic methods
299
5.7.1
Principles of electromagnetic surveying
299
5.7.2
Subsurface conductivity and EM responses
306
5.7.3
Acquisition of EM data
312
5.7.4
Processing and display of EM data
316
5.7.5
Interpretation of EM data
318
5.7.6
Interpretation pitfalls
326
5.7.7
Examples of EM data from mineral deposits
328
5.8
Downhole electromagnetic surveying
330
5.8.1
Acquisition of DHEM data
330
5.8.2
Display and interpretation of DHEM data
333
5.8.3
Examples of DHEM responses from mineral
deposits
337
5.8.4
Induction logging
339
5.9
Airborne electromagnetic surveying
339
5.9.1
Acquisition of AEM data
340
5.9.2
AEM systems
342
5.9.3
AEM survey practice
344
5.9.4
Display and interpretation of AEM data
345
5.9.5
Examples of AEM data from mineralised terrains
345
Summary 347
Review questions 348
Further reading 349
6
Seismic method
351
6.1
Introduction
351
6.2
Seismic waves
352
6.2.1
Elasticity and seismic velocity
353
6.2.2
Body waves
353
6.2.3
Surface waves
354
6.3
Propagation of body waves through the subsurface
354
6.3.1
Wavefronts and rays
354
6.3.2
Fresnel volume
355
6.3.3
Seismic attenuation
356
6.3.4
Effects of elastic property discontinuities
357
6.4
Acquisition and display of seismic data
363
6.4.1
Seismic sources
363
6.4.2
Seismic detectors
364
6.4.3
Displaying seismic data
364
6.5
Seismic re
fl
ection method
366
6.5.1
Data acquisition
367
6.5.2
Data processing
369
6.6
Variations in seismic properties in the geological
environment
383
6.6.1
Seismic properties of common rock types
384
6.6.2
Effects of temperature and pressure
387
6.6.3
Effects of metamorphism, alteration and
deformation
388
6.6.4
Seismic properties of mineralisation
389
6.6.5
Seismic properties of near-surface environments
390
6.6.6
Anisotropy
391
6.6.7
Absorption
391
6.6.8
Summary of geological controls on seismic
properties
392
6.6.9
Measuring seismic properties
392
6.7
Interpretation of seismic re
fl
ection data
393
6.7.1
Resolution
393
6.7.2
Quantitative interpretation
396
6.7.3
Interpretation pitfalls
397
6.7.4
Examples of seismic re
fl
ection data from
mineralised terrains
398
6.8
In-seam and downhole seismic surveys
401
6.8.1
In-seam surveys
402
6.8.2
Tomographic surveys
403
Summary 405
Review questions 406
Further reading 406
References 408
Index 426

"Providing a balance between principles and practice, this state-of-the-art overview of geophysical methods takes readers from the basic physical phenomena, through the acquisition and processing of data, to the creation of geological models of the subsurface and data interpretation to find hidden mineral deposits. Detailed descriptions of all the commonly used geophysical methods are given, including gravity, magnetic, radiometric, electrical, electromagnetic and seismic methods. Each technique is described in a consistent way and without complex mathematics. Emphasising extraction of maximum geological information from geophysical data, the book also explains petrophysics, data modelling and common interpretation pitfalls. Packed with full-colour figures, also available online, the text is supported by selected examples from around the world, including all the major deposit types. Designed for advanced undergraduate and graduate courses in minerals geoscience, this is also a valuable reference for professionals in the mining industry wishing to make greater use of geophysical methods." --Publisher's description.

There are no comments for this item.

to post a comment.