000 -LEADER |
fixed length control field |
18925cam a2200493 i 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20250822111810.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION |
fixed length control field |
m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
cr ||||||||||| |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
250822t20222022njum ob u001 0 eng |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119702252 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119702313 |
Qualifying information |
electronic book |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
1119702313 |
Qualifying information |
electronic book |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119702337 |
Qualifying information |
electronic book |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
111970233X |
Qualifying information |
electronic book |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119702320 |
Qualifying information |
electronic book |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
1119702321 |
Qualifying information |
electronic book |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
Cancelled/invalid ISBN |
9781119702252 |
Qualifying information |
hardcover |
035 ## - SYSTEM CONTROL NUMBER |
System control number |
(OCoLC)1286069704 |
Canceled/invalid control number |
(OCoLC)1285714595 |
041 ## - LANGUAGE CODE |
Language code of text/sound track or separate title |
eng |
042 ## - AUTHENTICATION CODE |
Authentication code |
pcc |
050 04 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
TP374 |
Item number |
.B575 2022 |
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
664/.09 |
Edition number |
23/eng/20211109 |
245 00 - TITLE STATEMENT |
Title |
Biopolymer-based food packaging : |
Remainder of title |
innovations and technology applications / |
Statement of responsibility, etc |
edited by Santosh Kumar, Avik Mukherjee, Joydeep Dutta. |
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Place of publication, distribution, etc |
Hoboken, NJ : |
Name of publisher, distributor, etc |
John Wiley & Sons, Inc., |
Date of publication, distribution, etc |
2022. |
264 #4 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Date of publication, distribution, etc |
©2022. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
1 online resource : |
Other physical details |
illustrations (some color) |
336 ## - CONTENT TYPE |
Content type term |
text |
Content type code |
txt |
Source |
rdacontent. |
337 ## - MEDIA TYPE |
Media type term |
computer |
Media type code |
c |
Source |
rdamedia. |
338 ## - CARRIER TYPE |
Carrier type term |
online resource |
Carrier type code |
cr |
Source |
rdacarrier. |
504 ## - BIBLIOGRAPHY, ETC. NOTE |
Bibliography, etc |
Includes bibliographical references and index. |
505 0# - CONTENTS |
Formatted contents note |
Table of Contents<br/>List of Contributors xv<br/><br/>Preface xix<br/><br/>1 An Overview of Natural Biopolymers in Food Packaging 1<br/>Santosh Kumar, Indra Bhusan Basumatary, Avik Mukherjee, and Joydeep Dutta<br/><br/>1.1 Introduction 1<br/><br/>1.2 History and Background 4<br/><br/>1.3 Classification 6<br/><br/>1.3.1 Polysaccharide-Based Biopolymers 6<br/><br/>1.3.2 Protein-Based Biopolymers 11<br/><br/>1.3.3 Lipid-Based Biopolymers 13<br/><br/>1.3.4 Biopolymers Synthesized from Bio-derived Monomers 14<br/><br/>1.4 Advantages and Disadvantages 15<br/><br/>1.5 Properties and Applications 16<br/><br/>1.6 Conclusion and Perspectives 17<br/><br/>References 21<br/><br/>2 Biopolymers: The Chemistry of Food and Packaging 29<br/>Rajib Majumder, Arpita Das, Avik Mukherjee, and Santosh Kumar<br/><br/>2.1 Introduction 30<br/><br/>2.2 Biopolymers, Packaging Surfaces, and the Chemistry of Foods 31<br/><br/>2.2.1 Biopolymers 31<br/><br/>2.2.2 Polysaccharide-Based Biopolymers 32<br/><br/>2.2.2.1 Starch and Derivatives 32<br/><br/>2.2.2.2 Cellulose and Derivatives 33<br/><br/>2.2.2.3 Chitin and Derivatives 33<br/><br/>2.2.2.4 Alginate and Pectin 34<br/><br/>2.2.2.5 Xanthan Gum 34<br/><br/>2.2.3 Protein-Based Biopolymers 35<br/><br/>2.2.3.1 Gelatin 35<br/><br/>2.2.3.2 Collagen 35<br/><br/>2.2.3.3 Soy Protein 36<br/><br/>2.2.3.4 Whey Protein 36<br/><br/>2.2.4 Aliphatic Polyester-Based Biopolymers 36<br/><br/>2.3 Properties 37<br/><br/>2.3.1 Physicochemical Properties 37<br/><br/>2.3.1.1 Density 42<br/><br/>2.3.1.2 Crystallinity 42<br/><br/>2.3.1.3 Melting Temperature (Tm) 43<br/><br/>2.3.1.4 Glass Transition Temperature (Tg) 44<br/><br/>2.3.1.5 Film-Forming Property 44<br/><br/>2.3.1.6 Solubility 44<br/><br/>2.3.1.7 Transparency 45<br/><br/>2.3.1.8 Thermal Stability 45<br/><br/>2.3.2 Mechanical Properties 45<br/><br/>2.3.3 Barrier Properties 46<br/><br/>2.3.4 Bio-activities 47<br/><br/>2.3.5 Biodegradability 49<br/><br/>2.4 Interactions Between Food and Packaging 50<br/><br/>2.4.1 Migration 50<br/><br/>2.4.2 Permeation 50<br/><br/>2.4.3 Sorption 51<br/><br/>2.5 Surface Properties of Packages and Food 52<br/><br/>2.5.1 Hydrophilicity and Hydrophobicity 52<br/><br/>2.5.2 Contact Angle 52<br/><br/>2.5.3 Wettability 53<br/><br/>2.6 Conclusion and Future Perspectives 53<br/><br/>References 54<br/><br/>3 Technologies for Biopolymer-Based Films and Coatings 66<br/>Anjali Khuntia, N. Sai Prasanna, and Jayeeta Mitra<br/><br/>3.1 Introduction 67<br/><br/>3.2 Fabrication Techniques for Films 68<br/><br/>3.2.1 Solvent Casting or Wet Process 68<br/><br/>3.2.1.1 Film-Forming Solution (FFS) 69<br/><br/>3.2.1.2 Film Casting or Film Coating 71<br/><br/>3.2.1.3 Film Drying 71<br/><br/>3.2.2 Extrusion or Dry Process 71<br/><br/>3.2.3 Electrohydrodynamic Technique 76<br/><br/>3.2.4 Comparison and Application of Different Fabrication Techniques 76<br/><br/>3.3 Coating Methods 76<br/><br/>3.3.1 Dipping 77<br/><br/>3.3.2 Brushing 77<br/><br/>3.3.3 Spraying 77<br/><br/>3.3.4 Electrospraying 78<br/><br/>3.3.5 Layer-by-Layer (LBL) Electrostatic Deposition 78<br/><br/>3.3.6 Vacuum Impregnation (VI) 79<br/><br/>3.4 Properties 79<br/><br/>3.4.1 Physical Properties 79<br/><br/>3.4.1.1 Thickness 79<br/><br/>3.4.1.2 Density 80<br/><br/>3.4.2 Water Absorption Capacity and Sorption Analysis 80<br/><br/>3.4.3 Contact Angle/Wetting Tension 82<br/><br/>3.4.4 Mechanical Properties 82<br/><br/>3.4.4.1 Tensile 84<br/><br/>3.4.4.2 Puncture Tests 85<br/><br/>3.4.5 Permeability 88<br/><br/>3.4.5.1 Water Vapor Permeability 88<br/><br/>3.4.5.2 Gas Permeability 92<br/><br/>3.4.6 Optical Properties 93<br/><br/>3.4.7 Rheological Properties 93<br/><br/>3.4.7.1 Viscosity Tests 94<br/><br/>3.4.7.2 Melt Index Test 94<br/><br/>3.4.8 Thermal Properties 95<br/><br/>3.4.8.1 Differential Scanning Calorimetry 95<br/><br/>3.4.8.2 Thermogravimetric Analysis 95<br/><br/>3.4.8.3 Thermomechanical Analysis 96<br/><br/>3.4.8.4 Dynamic Mechanical Thermal Analysis 97<br/><br/>3.5 Applications 98<br/><br/>3.5.1 Composite Films or Multilayer Packaging 99<br/><br/>3.5.2 Nanostructured Film 99<br/><br/>3.5.2.1 Nanocomposite Films 99<br/><br/>3.5.2.2 Nanolaminated Films 101<br/><br/>3.6 Conclusion and Perspectives 101<br/><br/>References 101<br/><br/>4 Chitosan-Based Films and Coatings 110<br/>Gitanjali Gautam, Ruchi Rani, Laxmikant S. Badwaik, and Charu Lata Mahanta<br/><br/>4.1 Introduction 110<br/><br/>4.2 Sources, Structure, and Properties 111<br/><br/>4.2.1 Sources 111<br/><br/>4.2.2 Structure 112<br/><br/>4.2.3 Properties 114<br/><br/>4.3 Isolation, Characterization, and Modifications 115<br/><br/>4.3.1 Isolation 115<br/><br/>4.3.1.1 Extraction from Crustaceous Shells 115<br/><br/>4.3.1.2 Extraction from Fungal Cell Wall and Mushrooms 116<br/><br/>4.3.1.3 Extraction from Insect Cuticles 117<br/><br/>4.3.1.4 Extraction from Terrestrial Animal Exoskeletons 118<br/><br/>4.3.2 Characterization 119<br/><br/>4.3.3 Modifications 119<br/><br/>4.4 Chitosan-Based Composite Films and Coatings 123<br/><br/>4.4.1 Gelatin-Based Edible Films and Coatings 123<br/><br/>4.4.2 Protein-Based Edible Films and Coatings 124<br/><br/>4.4.3 Starch-Based Edible Films and Coatings 125<br/><br/>4.4.4 Alginate-Based Edible Films and Coatings 125<br/><br/>4.5 Using Essential Oils as Antimicrobial Agent 126<br/><br/>4.5.1 Rosemary (Rosmarinus officinalis) 127<br/><br/>4.5.2 Cinnamon (Cinnamomum verum) 127<br/><br/>4.5.3 Oregano (Origanum vulgare) 127<br/><br/>4.5.4 Clove (Syzygium aromaticum L.) 128<br/><br/>4.5.5 Thyme (Thymus vulgaris) 128<br/><br/>4.6 Antimicrobial Activities 128<br/><br/>4.7 Effects on the Quality of Fruits and Vegetables 130<br/><br/>4.8 Effects on the Quality of Meat, Fish, and Seafood 130<br/><br/>4.9 Conclusion and Perspectives 137<br/><br/>References 138<br/><br/>5 Starch-Based Edible Films and Coatings 147<br/>Priyadarshini, S.R., Srinivasan Krishnamoorthy, J.A. Moses, and C. Anandharamakrishnan<br/><br/>5.1 Introduction 148<br/><br/>5.2 Source, Structure, and Characteristics of Starch Granules 148<br/><br/>5.3 Physicochemical, Rheological, and Functional Properties 150<br/><br/>5.4 Chemical and Physical Modifications 152<br/><br/>5.4.1 Chemical Modifications 152<br/><br/>5.4.1.1 Crosslinking 152<br/><br/>5.4.1.2 Grafting 153<br/><br/>5.4.1.3 Esterification 153<br/><br/>5.4.1.4 Etherification 153<br/><br/>5.4.1.5 Oxidization 153<br/><br/>5.4.1.6 Cationic Modification 153<br/><br/>5.4.1.7 Dual Modification 154<br/><br/>5.4.2 Physical Modifications 154<br/><br/>5.4.2.1 Pregelatinized Starch 154<br/><br/>5.4.2.2 Annealing 154<br/><br/>5.4.2.3 Heat Moisture Treatment 154<br/><br/>5.4.2.4 Heat Drying 155<br/><br/>5.4.2.5 Osmotic Pressure Treatment 155<br/><br/>5.2.2.6 Freezing 155<br/><br/>5.2.2.7 Thermal Inhibition 155<br/><br/>5.4.2.8 Non-Thermal Modifications 155<br/><br/>5.5 Starch-Based Bionanocomposite Films and Coatings 156<br/><br/>5.6 Characterization 159<br/><br/>5.6.1 Film Thickness 159<br/><br/>5.6.2 Particle Size Determination 159<br/><br/>5.6.3 Scanning Electron Microscopy (SEM) 159<br/><br/>5.6.4 Fourier Transform Infrared Spectroscopy (FTIR) 160<br/><br/>5.6.5 X-ray Diffraction (XRD) 162<br/><br/>5.7 Applications 164<br/><br/>5.8 Recent Developments and Future Directions 168<br/><br/>5.9 Conclusion and Perspectives 169<br/><br/>References 170<br/><br/>6 Protein-Based Films and Coatings 178<br/>Manashi Das Purkayastha and Santosh Kumar<br/><br/>6.1 Introduction 179<br/><br/>6.2 Types, Structures, and Properties 180<br/><br/>6.2.1 Casein 180<br/><br/>6.2.2 Whey 180<br/><br/>6.2.3 Gluten 181<br/><br/>6.2.4 Soy Protein 182<br/><br/>6.2.5 Collagen and Gelatin 182<br/><br/>6.2.6 Zein 183<br/><br/>6.3 Improvement in Physicochemical Properties of Proteins 183<br/><br/>6.3.1 Plasticizers 184<br/><br/>6.3.2 Physical and Chemical Crosslinking 185<br/><br/>6.4 Protein-Based Nanocomposites and Their Various Properties 187<br/><br/>6.5 Fabrication Techniques 192<br/><br/>6.5.1 Direct Casting 192<br/><br/>6.5.2 Coating 192<br/><br/>6.5.3 Spread Coating 193<br/><br/>6.5.4 Spin Coating 194<br/><br/>6.5.5 Spray Coating or Spraying 194<br/><br/>6.5.6 Dip Coating or Immersion Coating 194<br/><br/>6.5.7 Fluidized-Bed Coating 195<br/><br/>6.5.8 Pan Coating or Panning 195<br/><br/>6.5.9 Layer-by-Layer Assembly 195<br/><br/>6.5.10 Electrospinning 196<br/><br/>6.5.11 Extrusion 196<br/><br/>6.5.12 Compression Molding 198<br/><br/>6.5.13 Lamination 199<br/><br/>6.6 Applications 200<br/><br/>6.6.1 As Carrier of Antimicrobial Agents 201<br/><br/>6.6.2 As Carrier of Antioxidants 203<br/><br/>6.6.3 As Carrier of Flavoring Compounds 204<br/><br/>6.6.4 As Carrier of Live Microorganisms 206<br/><br/>6.7 Conclusion and Perspectives 208<br/><br/>References 209<br/><br/>7 Microbial Polysaccharides (MPs) in Food Packaging 225<br/>C. Shashikumar, Sudip Mitra, and Siddhartha Singha<br/><br/>7.1 Introduction 225<br/><br/>7.2 Production 227<br/><br/>7.3 Extraction and Purification 230<br/><br/>7.4 Characterization 230<br/><br/>7.4.1 Chemical Structure 234<br/><br/>7.4.2 Physicochemical Properties 239<br/><br/>7.4.2.1 Xanthan 239<br/><br/>7.4.2.2 Scleroglucan 239<br/><br/>7.4.2.3 Hyaluronic Acid or Hyaluronan 239<br/><br/>7.4.2.4 Xylinan or Acetan 239<br/><br/>7.4.2.5 Dextran 240<br/><br/>7.4.2.6 Gellan 241<br/><br/>7.4.2.7 Curdlan 242<br/><br/>7.4.2.8 Bacterial Cellulose 243<br/><br/>7.4.2.9 Pullulan 243<br/><br/>7.4.2.10 Alginate 243<br/><br/>7.4.2.11 Levan 244<br/><br/>7.4.2.12 β-Glucan 244<br/><br/>7.4.2.13 FucoPol 244<br/><br/>7.4.2.14 Kefiran 245<br/><br/>7.4.2.15 Polyhydroxyalkanoate 245<br/><br/>7.4.3 Film Formability and Properties Relevant for Packaging 245<br/><br/>7.5 Strategies for Tailoring MP Structures for Packaging Film or Coat Applications 249<br/><br/>7.6 Applications and Their Commercialization Status 251<br/><br/>7.7 Conclusion and Perspectives 255<br/><br/>References 256<br/><br/>8 Polylactic Acid (PLA)-Based Composites in Food Packaging 264<br/>M. Sukumar, K. Sudharsan, and Radha Krishnan K.<br/><br/>8.1 Introduction 264<br/><br/>8.1.1 Production of Lactic Acid 266<br/><br/>8.1.2 Properties 267<br/><br/>8.1.3 PLA Composites as Food Packaging Materials 269<br/><br/>8.2 Isolation and Purification 272<br/><br/>8.3 PLA-Based Antimicrobial Nanocomposites 274<br/><br/>8.4 Applications 276<br/><br/>8.5 Conclusion and Perspectives 277<br/><br/>References 278<br/><br/>9 Antimicrobial Agents in Films and Coatings 282<br/>Yashaswini Premjit, Gulshan Kumar Malik, and Jayeeta Mitra<br/><br/>9.1 Introduction 283<br/><br/>9.2 Classification 284<br/><br/>9.2.1 Natural Antimicrobials 284<br/><br/>9.2.1.1 Plant-Based Antimicrobials 290<br/><br/>9.2.1.2 Microbial-Based Antimicrobials 291<br/><br/>9.2.1.3 Animal-Based Antimicrobials 292<br/><br/>9.2.2 Chemical Antimicrobials 293<br/><br/>9.2.2.1 Nitrites 293<br/><br/>9.2.2.2 Chlorine Dioxide 293<br/><br/>9.2.3 Antimicrobial Nanostructures 294<br/><br/>9.2.3.1 Nanocarriers for Antimicrobials 294<br/><br/>9.2.3.2 Silver Nanoparticles 294<br/><br/>9.2.3.3 Chitosan Nanostructures 294<br/><br/>9.2.3.4 Nanoclays 294<br/><br/>9.2.3.5 Metal Oxide Nanoparticles 295<br/><br/>9.3 Choice of Materials 295<br/><br/>9.4 Methods of Addition 299<br/><br/>9.4.1 Antimicrobial Edible Coatings 299<br/><br/>9.4.2 Antimicrobial Films 303<br/><br/>9.4.3 Antimicrobial Pads 305<br/><br/>9.4.4 Antimicrobial Sachets 306<br/><br/>9.4.5 Modified Atmospheric Packaging 307<br/><br/>9.5 Effect on Packaging Film Properties 308<br/><br/>9.5.1 Effect on Mechanical Properties 308<br/><br/>9.5.2 Effect on Barrier Properties 310<br/><br/>9.5.3 Effect on Appearance, Color, and Transparency 310<br/><br/>9.5.4 Effect on Surface Hydrophilicity/Hydrophobicity of Films 313<br/><br/>9.6 Mechanisms of Action 313<br/><br/>9.6.1 Essential Oils 313<br/><br/>9.6.2 Organic Acids 314<br/><br/>9.6.3 Animal-Based Antimicrobials 314<br/><br/>9.6.4 Antimicrobial Peptides 315<br/><br/>9.6.5 Antimicrobial Nanoparticles 315<br/><br/>9.6.5.1 TiO2 315<br/><br/>9.6.5.2 ZnO 316<br/><br/>9.6.5.3 Ag NPs 316<br/><br/>9.7 Release Kinetics from Packaging Systems to Food 317<br/><br/>9.8 Food Regulations 319<br/><br/>9.9 Commercialization 320<br/><br/>9.10 Conclusion and Perspectives 320<br/><br/>References 322<br/><br/>10 Nanomaterials in Food Packaging 336<br/>Santosh Kumar, Avik Mukherjee, Sweety Kalita, Namrata Singh, Vimal Katiyar Atanu Mitra, and Dipankar Halder<br/><br/>10.1 Introduction 336<br/><br/>10.2 Nanomaterials and Food Packaging Concepts 337<br/><br/>10.3 Applications 339<br/><br/>10.3.1 Supplementing Packaging Characteristics 339<br/><br/>10.3.1.1 Nanoclay 342<br/><br/>10.3.1.2 Graphene 345<br/><br/>10.3.1.3 Organic Nanofillers 345<br/><br/>10.3.2 Antimicrobial Packaging 346<br/><br/>10.3.3 Extending Shelf-Life of Food 347<br/><br/>10.3.4 Inducing Smartness/Intelligence 351<br/><br/>10.4 Migration to Packaged Food Items 353<br/><br/>10.5 Environmental and Safety Aspects 354<br/><br/>10.5.1 Impact on Human Health and the Environment 354<br/><br/>10.5.2 Regulations on Use in the Food Sector 356<br/><br/>10.6 Conclusion and Perspectives 357<br/><br/>References 358<br/><br/>11 Silver and Zinc Oxide Nanoparticles in Films and Coatings 368<br/>Abhishek Roy, K. Dharmalingam, and R. Anandalakshmi<br/><br/>11.1 Introduction 368<br/><br/>11.2 Antimicrobial Properties 369<br/><br/>11.3 Biopolymer-Based Silver Nanocomposites 375<br/><br/>11.4 ZnO Nanostructures in Biopolymers 377<br/><br/>11.5 Applications of Silver Bionanocomposites 379<br/><br/>11.6 Applications of ZnO Bionanocomposites 383<br/><br/>11.7 Conclusion and Perspectives 384<br/><br/>References 385<br/><br/>12 Plant-Based Active Compounds in Food Packaging 394<br/>N. Arul Manikandan, Kannan Pakshirajan, and G. Pugazhenthi<br/><br/>12.1 Introduction 394<br/><br/>12.2 Plant-Based Active Compounds 396<br/><br/>12.2.1 Simple Phenolic Compounds 396<br/><br/>12.2.2 Flavones, Flavanols, and Flavonoids 396<br/><br/>12.2.3 Quinones 396<br/><br/>12.2.4 Tannins 397<br/><br/>12.2.5 Coumarins 398<br/><br/>12.2.6 Alkaloids 398<br/><br/>12.2.7 Terpenes 398<br/><br/>12.3 Active Components to Control Microbial Spoilage 398<br/><br/>12.3.1 Turmeric 405<br/><br/>12.3.2 Cinnamon 405<br/><br/>12.3.3 Lemongrass 405<br/><br/>12.3.4 Neem 406<br/><br/>12.3.5 Coriander 406<br/><br/>12.3.6 Garlic 406<br/><br/>12.3.7 Rosemary 406<br/><br/>12.3.8 Grapefruit Seed 407<br/><br/>12.3.9 Aloe Vera 407<br/><br/>12.3.10 Oregano 407<br/><br/>12.4 Active Materials to Control Food Oxidation (Food Antioxidants) 408<br/><br/>12.4.1 Quercetin 408<br/><br/>12.4.2 Carnosic Acid 409<br/><br/>12.4.3 Ellagic Acid 410<br/><br/>12.4.4 Ferulic Acid 410<br/><br/>12.4.5 α-Tocopherol 411<br/><br/>12.5 Polymer-Based Composites 411<br/><br/>12.6 Conclusion and Perspectives 415<br/><br/>References 415<br/><br/>13 Essential Oils in Active Films and Coatings 422<br/>K. Dharmalingam, Abhishek Roy, and R. Anandalakshmi<br/><br/>13.1 Introduction 422<br/><br/>13.2 Classifications and Components 423<br/><br/>13.3 Properties and Characteristics 424<br/><br/>13.4 Encapsulation 425<br/><br/>13.5 Biopolymer-Essential Oil Composites 428<br/><br/>13.6 Applications 432<br/><br/>13.7 Conclusion and Perspectives 438<br/><br/>References 439<br/><br/>14 Edible Films and Coatings 445<br/>Indra Bhusan Basumatary, Sweety Kalita, Vimal Katiyar, Avik Mukherjee, and Santosh Kumar<br/><br/>14.1 Introduction 445<br/><br/>14.2 Biopolymers 447<br/><br/>14.2.1 Polysaccharides 447<br/><br/>14.2.2 Proteins 448<br/><br/>14.2.3 Lipids 450<br/><br/>14.3 Natural Active Components 450<br/><br/>14.3.1 Plant Extracts 450<br/><br/>14.3.2 Antimicrobial Peptides 452<br/><br/>14.3.3 Probiotics 453<br/><br/>14.4 Nanomaterials 453<br/><br/>14.4.1 Inorganic Nanomaterials 453<br/><br/>14.4.2 Organic Nanomaterials 455<br/><br/>14.5 Extending Shelf-Life of Food 456<br/><br/>14.5.1 Fruits and Vegetables 456<br/><br/>14.5.2 Meat, Poultry, and Fish 459<br/><br/>14.5.3 Milk and Dairy Products 460<br/><br/>14.6 Conclusion and Perspectives 460<br/><br/>References 465<br/><br/>Index 476 |
520 ## - SUMMARY, ETC. |
Summary, etc |
"Synthetic plastics have become popular food packaging materials that are profusely used in various forms and facets. However, in recent years, disposal of plastic food packaging wastes, particularly the single use plastics, have become major concerns as environmental pollutants. In this context, biopolymer based neat, composite or hybrid films and coatings have gained tremendous research interests to address these concerns. Biopolymers are characterized by easy disposal, recycling, rapid biodegradation or composting, which make them environment-friendly. Plant based biopolymers such as starch, cellulose, pectin, gluten, zein, carnauba wax; animal based biopolymers such as gelatin, casein, chitosan, beeswax; microbial biopolymers such as dextran, pullulan, xanthan, microbial cellulose; and biopolymers derived from biobased monomers such as polylactic acid (PLA) are commonly used to fabricate films and coatings for food packaging applications. Biopolymer based films and coatings suffer from relatively inferior mechanical and barrier properties compared to synthetic plastics, and also lack the desired antimicrobial and antioxidant properties. To address these shortcoming, composite or hybrid films blended with other biopolymer(s) and/or reinforced with filler materials e.g. essential oil components, nanoparticles, antimicrobials and antioxidants, etc. are effective. Despite all these advantages, the manufacturing cost of biopolymer based food packaging films and coatings is higher than that of synthetic plastic films and coatings. But, in recent years, modern technologies and large scale production of these sustainable food packaging have rendered them profitable to food packaging industries. In this chapter, an introductory overview of biopolymers, their classification, properties, and food packaging and preservation applications are described."-- |
Assigning source |
Provided by publisher. |
545 0# - BIOGRAPHICAL OR HISTORICAL DATA |
Biographical or historical note |
About the Author<br/>Professor Joydeep Dutta, Functional Nano-Materials (FNM), KTH Royal Institute of Technology, Stockholm, Sweden<br/>Professor Dutta is Chair of Functional Materials at KTH Royal Institute of Technology, Stockholm, Sweden. His research interests encompass development of nanomaterials for planetcare and healthcare applications including enhanced treatment of impaired water, desalination, catalysis, photocatalysis, amongst others.<br/><br/>Dr Santosh Kumar, Assistant Professor, Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, India<br/>Research interests: Functional Nano-Materials (FNM) for Food and Environment applications; Nanocomposite based films and coatings for food packaging applications and Green Synthesis of Nanoparticles and their Antimicrobial Assessment <br/><br/>Dr Avik Mukherjee, Associate Professor, Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, India<br/>Areas of specialization: Microbiological quality and safety of foods, food quality and safety management, food preservation and processing. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Food |
General subdivision |
Packaging. |
Authority record control number |
http://id.loc.gov/authorities/subjects/sh85050207. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Biopolymers. |
Authority record control number |
http://id.loc.gov/authorities/subjects/sh85014255. |
650 #2 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Biopolymers. |
Authority record control number |
https://id.nlm.nih.gov/mesh/D001704. |
655 #4 - INDEX TERM--GENRE/FORM |
Genre/form data or focus term |
Electronic books. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Kumar, Santosh, |
Dates associated with a name |
1980- |
Authority record control number |
http://id.loc.gov/authorities/names/no2021109822 |
Relator term |
editor. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Mukherjee, Avik, |
Authority record control number |
http://id.loc.gov/authorities/names/no2021109827 |
Relator term |
editor. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Dutta, Joydeep |
Titles and other words associated with a name |
(Professor of functional materials), |
Authority record control number |
http://id.loc.gov/authorities/names/no2021109830 |
Relator term |
editor. |
856 40 - ELECTRONIC LOCATION AND ACCESS |
Uniform Resource Identifier |
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119702313 |
Link text |
Full text is available at Wiley Online Library Click here to view |
942 ## - ADDED ENTRY ELEMENTS |
Source of classification or shelving scheme |
|
Item type |
EBOOK |