Waste heat recovery in process industries / (Record no. 91909)

000 -LEADER
fixed length control field 08874cam a2200397Ii 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250819091151.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m o d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu|||unuuu
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250819s2022 gw m ob u001 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 3527830022
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783527830008
Qualifying information (electronic bk. : oBook)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 3527830006
Qualifying information (electronic bk. : oBook)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9783527348565
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783527830022
Qualifying information (e-book)
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1002/9783527830008
Source of number or code doi
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1291210492
Canceled/invalid control number (OCoLC)1289813325
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TJ260
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.402
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Preferred name for the person Jouhara, Hussam,
Authority record control number http://id.loc.gov/authorities/names/n2020008983
Relator term author.
245 10 - TITLE STATEMENT
Title Waste heat recovery in process industries /
Statement of responsibility, etc Hussam Jouhara.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Weinheim, Germany :
Name of publisher, distributor, etc Wiley-VCH,
Date of publication, distribution, etc 2022.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource.
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent.
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia.
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier.
340 ## - PHYSICAL MEDIUM
Source rdacc
Authority record control number or standard number http://rdaregistry.info/termList/RDAColourContent/1003.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note Table of Contents<br/>Preface xiii<br/><br/>1 Thermodynamic Cycles 1<br/><br/>1.1 Introduction to Thermodynamic Cycles 1<br/><br/>1.2 Rankine Cycle 1<br/><br/>1.2.1 Introduction 1<br/><br/>1.2.2 Thermodynamic Diagrams 2<br/><br/>1.2.3 The Carnot Cycle 10<br/><br/>1.2.4 Ideal and Actual Rankine Cycles 12<br/><br/>1.2.4.1 Ideal Cycle 13<br/><br/>1.2.4.2 Superheated Rankine Cycle 15<br/><br/>1.2.4.3 Actual Rankine Cycle 17<br/><br/>1.2.4.4 Improvements to the Rankine Cycle 19<br/><br/>1.2.4.5 Regenerative Rankine Cycles 22<br/><br/>1.2.4.6 Cogeneration 26<br/><br/>1.2.5 Other Configurations of the Rankine Cycle 29<br/><br/>1.2.5.1 Supercritical Rankine Cycles 29<br/><br/>1.2.5.2 Reverse Rankine Cycles 30<br/><br/>1.2.6 Rankine Cycles in Power Plants 31<br/><br/>1.2.6.1 Fossil Fuel Power Plants 31<br/><br/>1.2.6.2 Nuclear Power Plants 32<br/><br/>1.2.6.3 Overall Efficiency of a Power Plant 32<br/><br/>1.2.6.4 Case Studies 33<br/><br/>1.3 Organic Rankine Cycle 34<br/><br/>1.3.1 Configurations of ORC 35<br/><br/>1.3.1.1 Basic ORC Configuration 35<br/><br/>1.3.1.2 ORC with Preheating 36<br/><br/>1.3.1.3 Recuperative ORC 38<br/><br/>1.3.1.4 Recuperative ORC with Preheating 39<br/><br/>1.3.2 Organic Working Fluids 40<br/><br/>1.3.3 Organic Working Fluid Selection 42<br/><br/>1.3.4 Applications of the ORC 45<br/><br/>1.3.4.1 Waste Heat Recovery 45<br/><br/>1.4 Kalina Cycle 46<br/><br/>1.4.1 Cycle Fundamentals 46<br/><br/>1.4.1.1 Why Use Ammonia–Water Solution in Kalina Cycle? 48<br/><br/>1.4.2 Advantages and Drawbacks 49<br/><br/>1.4.2.1 Advantages 49<br/><br/>1.4.2.2 Drawbacks 50<br/><br/>1.4.3 Applications of the Kalina Cycle 50<br/><br/>1.4.3.1 The Different Configurations of the Cycle 51<br/><br/>1.4.4 Case Studies 53<br/><br/>1.5 Brayton Cycle 53<br/><br/>1.5.1 Regenerative Brayton Cycle (Regenerator) 57<br/><br/>1.5.1.1 Compressor Analysis 58<br/><br/>1.5.1.2 Turbine Analysis 58<br/><br/>1.5.1.3 Heat Supplied to the Cycle 59<br/><br/>1.5.2 Regenerative Brayton Cycle (Reheater and Intercooler) 59<br/><br/>1.5.2.1 Intercooling 60<br/><br/>1.5.2.2 Reheating 60<br/><br/>1.6 Chapter Summary 61<br/><br/>References 62<br/><br/>2 Waste Heat Recovery 67<br/><br/>2.1 Burner and Air Preheaters 67<br/><br/>2.1.1 Recuperators 67<br/><br/>2.1.1.1 Recuperative Burners 68<br/><br/>2.1.1.2 Classifying Recuperative Burners 71<br/><br/>2.1.1.3 Efficiency Improvement and Fuel Savings 72<br/><br/>2.1.2 Regenerators 74<br/><br/>2.1.2.1 Rotary Regenerators 74<br/><br/>2.1.2.2 Static Regenerators 75<br/><br/>2.1.2.3 Regenerative Burners 75<br/><br/>2.1.3 Burner Technology Comparison 76<br/><br/>2.1.4 No X Formation 77<br/><br/>2.1.5 Run-Around Coil 78<br/><br/>2.2 Heat Exchangers 79<br/><br/>2.2.1 Shell and Tube HEXs 79<br/><br/>2.2.1.1 Construction 80<br/><br/>2.2.1.2 Applications and Limitations 82<br/><br/>2.2.2 Plate Heat Exchanger 82<br/><br/>2.2.2.1 Spiral Plate Heat Exchanger 83<br/><br/>2.2.3 Heat Pipe Heat Exchanger 83<br/><br/>2.2.4 Compact HEX 85<br/><br/>2.3 Waste Heat Boilers 86<br/><br/>2.3.1 Different WHB Designs 87<br/><br/>2.3.2 WHB Methodologies 88<br/><br/>2.3.2.1 Feed Water Preheating Effect 88<br/><br/>2.3.2.2 Optimising Thermodynamic Cycles 89<br/><br/>2.3.2.3 Heat Recovery Boiler with Water Spray Systems 91<br/><br/>2.3.3 Failure Modes 92<br/><br/>2.3.3.1 Failure Modes Analysis 92<br/><br/>2.4 Heat Recovery Steam Generators 93<br/><br/>2.4.1 Construction of Waste HRSG 94<br/><br/>2.4.1.1 HRSG Design and Construction 95<br/><br/>2.4.1.2 Evaporator 95<br/><br/>2.4.1.3 Superheater 96<br/><br/>2.4.1.4 Economiser 96<br/><br/>2.4.1.5 Steam Drum 96<br/><br/>2.4.1.6 Evaporator Types 96<br/><br/>2.4.1.7 Horizontal Tube HEXs 98<br/><br/>2.4.1.8 Natural Circulation HRSGs 98<br/><br/>2.4.1.9 Assisted (or Forced) Circulation HRSGs 99<br/><br/>2.4.1.10 Tube Materials 99<br/><br/>2.4.1.11 The ‘Pinch Point’ and Other Effects 100<br/><br/>2.5 Heat Pumps 100<br/><br/>2.5.1 Fundamental Principles of Heat Pumps 100<br/><br/>2.5.1.1 Cooling Mode 101<br/><br/>2.5.1.2 Heating Mode 101<br/><br/>2.5.2 Variation of Heat Pump System 102<br/><br/>2.5.2.1 Air Source Heat Pump System 103<br/><br/>2.5.2.2 Ground Source Heat Pump System 103<br/><br/>2.5.2.3 Water Source Heat Pump System 105<br/><br/>2.5.2.4 Water Loop Heat Pump System 105<br/><br/>2.5.2.5 Exhaust Air System 106<br/><br/>2.5.2.6 Hybrid Heat Pump 106<br/><br/>2.5.2.7 Solar-Assisted Heat Pumps 106<br/><br/>2.6 Direct Electrical Conversion Device 107<br/><br/>2.6.1 TEG – Working Principle 108<br/><br/>2.6.2 The Seebeck Effect 109<br/><br/>2.6.3 The Peltier Effect 109<br/><br/>2.6.3.1 Applications of the Peltier Effect 110<br/><br/>2.6.4 Thomson Effect 110<br/><br/>2.6.5 Joule Heating 111<br/><br/>2.6.6 Theoretical Principle 112<br/><br/>2.6.7 Figure of Merit 112<br/><br/>2.6.8 Fermi Level 113<br/><br/>2.6.9 Nano-Sizing 114<br/><br/>2.6.10 Efficiency of TEG 115<br/><br/>2.7 Thermal Storage 116<br/><br/>2.7.1 Sensible Heat Storage 117<br/><br/>2.7.2 Latent Heat Storage 120<br/><br/>2.7.3 Thermochemical Storage 123<br/><br/>2.7.4 Phase Change Materials 123<br/><br/>2.7.5 Organic Material 125<br/><br/>2.7.6 Inorganic PCMs 128<br/><br/>2.7.7 Eutectic PCMs 128<br/><br/>2.7.8 PCM Methodologies 129<br/><br/>2.7.8.1 Encapsulation of PCMs 129<br/><br/>2.7.8.2 Microencapsulated PCMs 129<br/><br/>2.7.8.3 Macroencapsulation of the PCMs 132<br/><br/>2.7.8.4 Nanomaterial PCMs 132<br/><br/>2.7.8.5 Shape Stabilisation 135<br/><br/>2.8 Design Development Methods 135<br/><br/>2.8.1 Introduction 135<br/><br/>2.8.2 Heat Exchangers 140<br/><br/>2.8.2.1 Local Heat Transfer 140<br/><br/>2.8.2.2 LMTD Method 147<br/><br/>2.8.2.3 Effectiveness-Number of Transfer Units (ε-NTU) Method 151<br/><br/>2.8.3 Regenerative and Recuperative Burners 152<br/><br/>2.8.3.1 Regenerative Burners 154<br/><br/>2.8.3.2 Recuperative Burners 156<br/><br/>2.8.4 Waste Heat Boilers 157<br/><br/>2.8.5 Air Preheaters 160<br/><br/>2.8.6 Heat Recovery Steam Generator 166<br/><br/>2.8.7 Heat Pumps 170<br/><br/>2.8.8 Direct Electrical Conversion Device 173<br/><br/>2.8.9 Thermal Storage 176<br/><br/>References 178<br/><br/>3 Low-Temperature Applications 191<br/><br/>3.1 Refrigeration 191<br/><br/>3.2 Cryogenics 198<br/><br/>3.2.1 Loop Heat Pipe 199<br/><br/>3.3 HVAC 204<br/><br/>References 209<br/><br/>4 Medium-Temperature Applications 213<br/><br/>4.1 Food Industry 213<br/><br/>4.1.1 Energy Use in the Industry 213<br/><br/>4.1.2 Case Study 1: Heat Recovery Potential of the Crisps Manufacturing Process 214<br/><br/>4.1.3 Case Study 2: Temperature and Energy Performance of Open Refrigerated Display Cabinets Using Heat Pipe Shelves 215<br/><br/>4.2 Ventilation 221<br/><br/>4.2.1 Applications 221<br/><br/>4.3 Solar Energy 223<br/><br/>4.4 Geothermal Energy 230<br/><br/>4.5 Automotive Industry 233<br/><br/>4.5.1 Industrial Processes 235<br/><br/>4.6 Aviation 237<br/><br/>References 239<br/><br/>5 High-Temperature Applications 245<br/><br/>5.1 Steel Industry 245<br/><br/>5.1.1 TEG Modules 246<br/><br/>5.1.2 Heat Exchangers 246<br/><br/>5.1.2.1 Application 1: Slag Particles Blast Furnace Retrofit 246<br/><br/>5.1.2.2 Application 2: Flat Heat Pipe Heat Exchanger 247<br/><br/>5.1.3 Recuperators 249<br/><br/>5.1.3.1 Application 1: Heat Recuperator for Steel Slag 249<br/><br/>5.2 Ceramic Industry 251<br/><br/>5.2.1 Introduction 251<br/><br/>5.2.2 Heat Exchangers 251<br/><br/>5.2.2.1 Application 1: Radiative Heat Pipe 251<br/><br/>5.2.2.2 Application 2: Multi-Pass Heat Pipe 252<br/><br/>5.2.2.3 Application 3: Forced Convection Heat Pipe 253<br/><br/>5.3 Cement Industry 254<br/><br/>5.3.1 Gas Suspension Preheaters 255<br/><br/>5.3.1.1 Application 1 255<br/><br/>5.3.1.2 Application 2 256<br/><br/>5.3.2 Heat Pipe Thermoelectric Generator 256<br/><br/>5.4 Aluminium Industry 258<br/><br/>5.4.1 Rotary Regenerator 258<br/><br/>5.4.2 Heat Exchangers 258<br/><br/>5.4.3 Heat Pumps 258<br/><br/>5.4.4 Recuperators 260<br/><br/>5.4.4.1 Radiative Recuperator 260<br/><br/>5.4.4.2 Convective Recuperator 261<br/><br/>5.4.4.3 Hybrid Recuperator 262<br/><br/>5.4.5 Thermoelectric Device 262<br/><br/>5.4.6 Regenerative Burner 262<br/><br/>5.4.7 Preheating Scrap 264<br/><br/>5.4.8 De-coating 265<br/><br/>References 265<br/><br/>Index 269
545 0# - BIOGRAPHICAL OR HISTORICAL DATA
Biographical or historical note About the Author<br/>Hussam Jouhara is Full Professor of Thermal Engineering at Brunel University in London, UK. His research and professional foci are on the development of heat pipe-based heat exchangers with successful implementation in a multitude of temperature ranges, including cryogenic and high-temperature industrial waste heat recovery.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Heat recovery.
Authority record control number http://id.loc.gov/authorities/subjects/sh85059803.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9783527830008
Link text Full text is available at Wiley Online Library Click here to view
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Source of acquisition Full call number Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2025-08-19 ALBASA Consortium 621.402 2025-08-19 2025-08-19 EBOOK