000 -LEADER |
fixed length control field |
08874cam a2200397Ii 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20250819091151.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION |
fixed length control field |
m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
cr cnu|||unuuu |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
250819s2022 gw m ob u001 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
3527830022 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9783527830008 |
Qualifying information |
(electronic bk. : oBook) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
3527830006 |
Qualifying information |
(electronic bk. : oBook) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
Cancelled/invalid ISBN |
9783527348565 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9783527830022 |
Qualifying information |
(e-book) |
024 7# - OTHER STANDARD IDENTIFIER |
Standard number or code |
10.1002/9783527830008 |
Source of number or code |
doi |
035 ## - SYSTEM CONTROL NUMBER |
System control number |
(OCoLC)1291210492 |
Canceled/invalid control number |
(OCoLC)1289813325 |
041 ## - LANGUAGE CODE |
Language code of text/sound track or separate title |
eng |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
TJ260 |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
621.402 |
Edition number |
23 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Preferred name for the person |
Jouhara, Hussam, |
Authority record control number |
http://id.loc.gov/authorities/names/n2020008983 |
Relator term |
author. |
245 10 - TITLE STATEMENT |
Title |
Waste heat recovery in process industries / |
Statement of responsibility, etc |
Hussam Jouhara. |
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Place of publication, distribution, etc |
Weinheim, Germany : |
Name of publisher, distributor, etc |
Wiley-VCH, |
Date of publication, distribution, etc |
2022. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
1 online resource. |
336 ## - CONTENT TYPE |
Content type term |
text |
Content type code |
txt |
Source |
rdacontent. |
337 ## - MEDIA TYPE |
Media type term |
computer |
Media type code |
c |
Source |
rdamedia. |
338 ## - CARRIER TYPE |
Carrier type term |
online resource |
Carrier type code |
cr |
Source |
rdacarrier. |
340 ## - PHYSICAL MEDIUM |
Source |
rdacc |
Authority record control number or standard number |
http://rdaregistry.info/termList/RDAColourContent/1003. |
504 ## - BIBLIOGRAPHY, ETC. NOTE |
Bibliography, etc |
Includes bibliographical references and index. |
505 0# - CONTENTS |
Formatted contents note |
Table of Contents<br/>Preface xiii<br/><br/>1 Thermodynamic Cycles 1<br/><br/>1.1 Introduction to Thermodynamic Cycles 1<br/><br/>1.2 Rankine Cycle 1<br/><br/>1.2.1 Introduction 1<br/><br/>1.2.2 Thermodynamic Diagrams 2<br/><br/>1.2.3 The Carnot Cycle 10<br/><br/>1.2.4 Ideal and Actual Rankine Cycles 12<br/><br/>1.2.4.1 Ideal Cycle 13<br/><br/>1.2.4.2 Superheated Rankine Cycle 15<br/><br/>1.2.4.3 Actual Rankine Cycle 17<br/><br/>1.2.4.4 Improvements to the Rankine Cycle 19<br/><br/>1.2.4.5 Regenerative Rankine Cycles 22<br/><br/>1.2.4.6 Cogeneration 26<br/><br/>1.2.5 Other Configurations of the Rankine Cycle 29<br/><br/>1.2.5.1 Supercritical Rankine Cycles 29<br/><br/>1.2.5.2 Reverse Rankine Cycles 30<br/><br/>1.2.6 Rankine Cycles in Power Plants 31<br/><br/>1.2.6.1 Fossil Fuel Power Plants 31<br/><br/>1.2.6.2 Nuclear Power Plants 32<br/><br/>1.2.6.3 Overall Efficiency of a Power Plant 32<br/><br/>1.2.6.4 Case Studies 33<br/><br/>1.3 Organic Rankine Cycle 34<br/><br/>1.3.1 Configurations of ORC 35<br/><br/>1.3.1.1 Basic ORC Configuration 35<br/><br/>1.3.1.2 ORC with Preheating 36<br/><br/>1.3.1.3 Recuperative ORC 38<br/><br/>1.3.1.4 Recuperative ORC with Preheating 39<br/><br/>1.3.2 Organic Working Fluids 40<br/><br/>1.3.3 Organic Working Fluid Selection 42<br/><br/>1.3.4 Applications of the ORC 45<br/><br/>1.3.4.1 Waste Heat Recovery 45<br/><br/>1.4 Kalina Cycle 46<br/><br/>1.4.1 Cycle Fundamentals 46<br/><br/>1.4.1.1 Why Use Ammonia–Water Solution in Kalina Cycle? 48<br/><br/>1.4.2 Advantages and Drawbacks 49<br/><br/>1.4.2.1 Advantages 49<br/><br/>1.4.2.2 Drawbacks 50<br/><br/>1.4.3 Applications of the Kalina Cycle 50<br/><br/>1.4.3.1 The Different Configurations of the Cycle 51<br/><br/>1.4.4 Case Studies 53<br/><br/>1.5 Brayton Cycle 53<br/><br/>1.5.1 Regenerative Brayton Cycle (Regenerator) 57<br/><br/>1.5.1.1 Compressor Analysis 58<br/><br/>1.5.1.2 Turbine Analysis 58<br/><br/>1.5.1.3 Heat Supplied to the Cycle 59<br/><br/>1.5.2 Regenerative Brayton Cycle (Reheater and Intercooler) 59<br/><br/>1.5.2.1 Intercooling 60<br/><br/>1.5.2.2 Reheating 60<br/><br/>1.6 Chapter Summary 61<br/><br/>References 62<br/><br/>2 Waste Heat Recovery 67<br/><br/>2.1 Burner and Air Preheaters 67<br/><br/>2.1.1 Recuperators 67<br/><br/>2.1.1.1 Recuperative Burners 68<br/><br/>2.1.1.2 Classifying Recuperative Burners 71<br/><br/>2.1.1.3 Efficiency Improvement and Fuel Savings 72<br/><br/>2.1.2 Regenerators 74<br/><br/>2.1.2.1 Rotary Regenerators 74<br/><br/>2.1.2.2 Static Regenerators 75<br/><br/>2.1.2.3 Regenerative Burners 75<br/><br/>2.1.3 Burner Technology Comparison 76<br/><br/>2.1.4 No X Formation 77<br/><br/>2.1.5 Run-Around Coil 78<br/><br/>2.2 Heat Exchangers 79<br/><br/>2.2.1 Shell and Tube HEXs 79<br/><br/>2.2.1.1 Construction 80<br/><br/>2.2.1.2 Applications and Limitations 82<br/><br/>2.2.2 Plate Heat Exchanger 82<br/><br/>2.2.2.1 Spiral Plate Heat Exchanger 83<br/><br/>2.2.3 Heat Pipe Heat Exchanger 83<br/><br/>2.2.4 Compact HEX 85<br/><br/>2.3 Waste Heat Boilers 86<br/><br/>2.3.1 Different WHB Designs 87<br/><br/>2.3.2 WHB Methodologies 88<br/><br/>2.3.2.1 Feed Water Preheating Effect 88<br/><br/>2.3.2.2 Optimising Thermodynamic Cycles 89<br/><br/>2.3.2.3 Heat Recovery Boiler with Water Spray Systems 91<br/><br/>2.3.3 Failure Modes 92<br/><br/>2.3.3.1 Failure Modes Analysis 92<br/><br/>2.4 Heat Recovery Steam Generators 93<br/><br/>2.4.1 Construction of Waste HRSG 94<br/><br/>2.4.1.1 HRSG Design and Construction 95<br/><br/>2.4.1.2 Evaporator 95<br/><br/>2.4.1.3 Superheater 96<br/><br/>2.4.1.4 Economiser 96<br/><br/>2.4.1.5 Steam Drum 96<br/><br/>2.4.1.6 Evaporator Types 96<br/><br/>2.4.1.7 Horizontal Tube HEXs 98<br/><br/>2.4.1.8 Natural Circulation HRSGs 98<br/><br/>2.4.1.9 Assisted (or Forced) Circulation HRSGs 99<br/><br/>2.4.1.10 Tube Materials 99<br/><br/>2.4.1.11 The ‘Pinch Point’ and Other Effects 100<br/><br/>2.5 Heat Pumps 100<br/><br/>2.5.1 Fundamental Principles of Heat Pumps 100<br/><br/>2.5.1.1 Cooling Mode 101<br/><br/>2.5.1.2 Heating Mode 101<br/><br/>2.5.2 Variation of Heat Pump System 102<br/><br/>2.5.2.1 Air Source Heat Pump System 103<br/><br/>2.5.2.2 Ground Source Heat Pump System 103<br/><br/>2.5.2.3 Water Source Heat Pump System 105<br/><br/>2.5.2.4 Water Loop Heat Pump System 105<br/><br/>2.5.2.5 Exhaust Air System 106<br/><br/>2.5.2.6 Hybrid Heat Pump 106<br/><br/>2.5.2.7 Solar-Assisted Heat Pumps 106<br/><br/>2.6 Direct Electrical Conversion Device 107<br/><br/>2.6.1 TEG – Working Principle 108<br/><br/>2.6.2 The Seebeck Effect 109<br/><br/>2.6.3 The Peltier Effect 109<br/><br/>2.6.3.1 Applications of the Peltier Effect 110<br/><br/>2.6.4 Thomson Effect 110<br/><br/>2.6.5 Joule Heating 111<br/><br/>2.6.6 Theoretical Principle 112<br/><br/>2.6.7 Figure of Merit 112<br/><br/>2.6.8 Fermi Level 113<br/><br/>2.6.9 Nano-Sizing 114<br/><br/>2.6.10 Efficiency of TEG 115<br/><br/>2.7 Thermal Storage 116<br/><br/>2.7.1 Sensible Heat Storage 117<br/><br/>2.7.2 Latent Heat Storage 120<br/><br/>2.7.3 Thermochemical Storage 123<br/><br/>2.7.4 Phase Change Materials 123<br/><br/>2.7.5 Organic Material 125<br/><br/>2.7.6 Inorganic PCMs 128<br/><br/>2.7.7 Eutectic PCMs 128<br/><br/>2.7.8 PCM Methodologies 129<br/><br/>2.7.8.1 Encapsulation of PCMs 129<br/><br/>2.7.8.2 Microencapsulated PCMs 129<br/><br/>2.7.8.3 Macroencapsulation of the PCMs 132<br/><br/>2.7.8.4 Nanomaterial PCMs 132<br/><br/>2.7.8.5 Shape Stabilisation 135<br/><br/>2.8 Design Development Methods 135<br/><br/>2.8.1 Introduction 135<br/><br/>2.8.2 Heat Exchangers 140<br/><br/>2.8.2.1 Local Heat Transfer 140<br/><br/>2.8.2.2 LMTD Method 147<br/><br/>2.8.2.3 Effectiveness-Number of Transfer Units (ε-NTU) Method 151<br/><br/>2.8.3 Regenerative and Recuperative Burners 152<br/><br/>2.8.3.1 Regenerative Burners 154<br/><br/>2.8.3.2 Recuperative Burners 156<br/><br/>2.8.4 Waste Heat Boilers 157<br/><br/>2.8.5 Air Preheaters 160<br/><br/>2.8.6 Heat Recovery Steam Generator 166<br/><br/>2.8.7 Heat Pumps 170<br/><br/>2.8.8 Direct Electrical Conversion Device 173<br/><br/>2.8.9 Thermal Storage 176<br/><br/>References 178<br/><br/>3 Low-Temperature Applications 191<br/><br/>3.1 Refrigeration 191<br/><br/>3.2 Cryogenics 198<br/><br/>3.2.1 Loop Heat Pipe 199<br/><br/>3.3 HVAC 204<br/><br/>References 209<br/><br/>4 Medium-Temperature Applications 213<br/><br/>4.1 Food Industry 213<br/><br/>4.1.1 Energy Use in the Industry 213<br/><br/>4.1.2 Case Study 1: Heat Recovery Potential of the Crisps Manufacturing Process 214<br/><br/>4.1.3 Case Study 2: Temperature and Energy Performance of Open Refrigerated Display Cabinets Using Heat Pipe Shelves 215<br/><br/>4.2 Ventilation 221<br/><br/>4.2.1 Applications 221<br/><br/>4.3 Solar Energy 223<br/><br/>4.4 Geothermal Energy 230<br/><br/>4.5 Automotive Industry 233<br/><br/>4.5.1 Industrial Processes 235<br/><br/>4.6 Aviation 237<br/><br/>References 239<br/><br/>5 High-Temperature Applications 245<br/><br/>5.1 Steel Industry 245<br/><br/>5.1.1 TEG Modules 246<br/><br/>5.1.2 Heat Exchangers 246<br/><br/>5.1.2.1 Application 1: Slag Particles Blast Furnace Retrofit 246<br/><br/>5.1.2.2 Application 2: Flat Heat Pipe Heat Exchanger 247<br/><br/>5.1.3 Recuperators 249<br/><br/>5.1.3.1 Application 1: Heat Recuperator for Steel Slag 249<br/><br/>5.2 Ceramic Industry 251<br/><br/>5.2.1 Introduction 251<br/><br/>5.2.2 Heat Exchangers 251<br/><br/>5.2.2.1 Application 1: Radiative Heat Pipe 251<br/><br/>5.2.2.2 Application 2: Multi-Pass Heat Pipe 252<br/><br/>5.2.2.3 Application 3: Forced Convection Heat Pipe 253<br/><br/>5.3 Cement Industry 254<br/><br/>5.3.1 Gas Suspension Preheaters 255<br/><br/>5.3.1.1 Application 1 255<br/><br/>5.3.1.2 Application 2 256<br/><br/>5.3.2 Heat Pipe Thermoelectric Generator 256<br/><br/>5.4 Aluminium Industry 258<br/><br/>5.4.1 Rotary Regenerator 258<br/><br/>5.4.2 Heat Exchangers 258<br/><br/>5.4.3 Heat Pumps 258<br/><br/>5.4.4 Recuperators 260<br/><br/>5.4.4.1 Radiative Recuperator 260<br/><br/>5.4.4.2 Convective Recuperator 261<br/><br/>5.4.4.3 Hybrid Recuperator 262<br/><br/>5.4.5 Thermoelectric Device 262<br/><br/>5.4.6 Regenerative Burner 262<br/><br/>5.4.7 Preheating Scrap 264<br/><br/>5.4.8 De-coating 265<br/><br/>References 265<br/><br/>Index 269 |
545 0# - BIOGRAPHICAL OR HISTORICAL DATA |
Biographical or historical note |
About the Author<br/>Hussam Jouhara is Full Professor of Thermal Engineering at Brunel University in London, UK. His research and professional foci are on the development of heat pipe-based heat exchangers with successful implementation in a multitude of temperature ranges, including cryogenic and high-temperature industrial waste heat recovery. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Heat recovery. |
Authority record control number |
http://id.loc.gov/authorities/subjects/sh85059803. |
655 #4 - INDEX TERM--GENRE/FORM |
Genre/form data or focus term |
Electronic books. |
856 40 - ELECTRONIC LOCATION AND ACCESS |
Uniform Resource Identifier |
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527830008 |
Link text |
Full text is available at Wiley Online Library Click here to view |
942 ## - ADDED ENTRY ELEMENTS |
Source of classification or shelving scheme |
|
Item type |
EBOOK |