000 -LEADER |
fixed length control field |
18207cam a2200409 i 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20250816111433.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION |
fixed length control field |
m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
cr cnu---unuuu |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
250816t20232023njum o u000 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
1119839203 |
Qualifying information |
hardcover |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119839569 |
Qualifying information |
electronic book |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
1119839564 |
Qualifying information |
electronic book |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119839552 |
Qualifying information |
electronic book |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
1119839556 |
Qualifying information |
electronic book |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
Cancelled/invalid ISBN |
9781119839200 |
Qualifying information |
hardcover |
035 ## - SYSTEM CONTROL NUMBER |
System control number |
(OCoLC)1405899433 |
041 ## - LANGUAGE CODE |
Language code of text/sound track or separate title |
eng |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
TK5103.59 |
Item number |
.M63 2023 |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
621.382/7 |
Edition number |
23/eng/20231110 |
245 00 - TITLE STATEMENT |
Title |
Modeling and optimization of optical communication networks / |
Statement of responsibility, etc |
edited by Chandra Singh... [and 3 others] |
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Place of publication, distribution, etc |
Hoboken, NJ : |
Name of publisher, distributor, etc |
Wiley ; |
Place of publication, distribution, etc |
Beverly, MA : |
Name of publisher, distributor, etc |
Scrivener Publishing LLC, |
Date of publication, distribution, etc |
2023. |
264 #4 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Date of publication, distribution, etc |
©2023. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
1 online resource. |
336 ## - CONTENT TYPE |
Content type term |
text |
Content type code |
txt |
Source |
rdacontent. |
337 ## - MEDIA TYPE |
Media type term |
computer |
Media type code |
c |
Source |
rdamedia. |
338 ## - CARRIER TYPE |
Carrier type term |
online resource |
Carrier type code |
cr |
Source |
rdacarrier. |
340 ## - PHYSICAL MEDIUM |
Source |
rdacc |
Authority record control number or standard number |
http://rdaregistry.info/termList/RDAColourContent/1003. |
505 0# - CONTENTS |
Formatted contents note |
Table of Contents<br/>Preface xv<br/><br/>1 Investigation on Optical Sensors for Heart Rate Monitoring 1<br/>V. Vijeya Kaveri, V. Meenakshi, N. Kousika and A. Pushpalatha<br/><br/>1.1 Introduction 2<br/><br/>1.2 Overview of PPG 2<br/><br/>1.2.1 PPG Waveform 2<br/><br/>1.2.2 Photoplethysmography Waveforms Based on the Origin of Optical Concern 2<br/><br/>1.2.3 Photoplethysmography’s Early on and Modern Records 3<br/><br/>1.2.4 Building Blocks of Photoplethysmography 4<br/><br/>1.2.5 Protocol Measurement and Reproducibility 6<br/><br/>1.3 Clinical Application – Heart Rate Monitoring 7<br/><br/>1.4 Summary 8<br/><br/>References 8<br/><br/>2 Adopting a Fusion Approach for Optical Amplification 11<br/>E. Francy Irudaya Rani, T. Lurthu Pushparaj and E. Fantin Irudaya Raj<br/><br/>2.1 Introduction 12<br/><br/>2.2 The Mechanism Involved 13<br/><br/>2.3 Types of Amplifier 14<br/><br/>2.3.1 Semiconductor Optical Amplifiers 14<br/><br/>2.3.1.1 Various Phases and Progress of SOA 15<br/><br/>2.3.2 Fiber Raman Amplifiers 16<br/><br/>2.3.3 Fiber Brillouin Amplifiers 17<br/><br/>2.3.4 Doped-Fiber Amplifiers 17<br/><br/>2.4 Hybrid Optical Amplifiers 19<br/><br/>2.4.1 EDFA and SOA Hybrid 21<br/><br/>2.4.2 EDFA and FRA Hybrid 21<br/><br/>2.4.3 RFA and SOA Hybrid 22<br/><br/>2.4.4 Combination of EYDWA as well as SOA 23<br/><br/>2.4.5 EDFA–EYCDFA Hybrid 23<br/><br/>2.4.6 TDFA Along with RFA Hybrid 23<br/><br/>2.4.7 EDFA and TDFA Hybrid 23<br/><br/>2.5 Applications 24<br/><br/>2.5.1 Telecom Infrastructure Optical Power Amplifier 26<br/><br/>2.6 Current Scenario 27<br/><br/>2.7 Discussion 28<br/><br/>2.8 Conclusions 30<br/><br/>References 30<br/><br/>3 Optical Sensors 35<br/>M. Shanthi, R. Niraimathi, V. Chamundeeswari and Mahaboob Subahani Akbarali<br/><br/>3.1 Introduction 35<br/><br/>3.2 Glass Fibers 36<br/><br/>3.3 Plastic Fibers 37<br/><br/>3.4 Optical Fiber Sensors Advantages Over Traditional Sensors 37<br/><br/>3.5 Fiber Optic Sensor Principles 38<br/><br/>3.6 Classification of Fiber Optic Sensors 38<br/><br/>3.6.1 Intrinsic Fiber Optic Sensor 39<br/><br/>3.6.2 Extrinsic Fiber Optic Sensor 39<br/><br/>3.6.3 Intensity-Modulated Sensors 40<br/><br/>3.6.3.1 Intensity Type Fiber Optic Sensor Using Evanescent Wave Coupling 41<br/><br/>3.6.3.2 Intensity Type Fiber Optic Sensor Using Microbend Sensor 41<br/><br/>3.6.4 Phase Modulated Fiber Optic Sensors 42<br/><br/>3.6.4.1 Fiber Optic Gyroscope 43<br/><br/>3.6.4.2 Fiber-Optic Current Sensor 43<br/><br/>3.6.5 Polarization Modulated Fiber Optic Sensors 43<br/><br/>3.6.6 Physical Sensor 44<br/><br/>3.6.6.1 Temperature Sensors 44<br/><br/>3.6.6.2 Proximity Sensor 45<br/><br/>3.6.6.3 Depth/Pressure Sensor 45<br/><br/>3.6.7 Chemical Sensor 45<br/><br/>3.6.8 Bio-Medical Sensor 46<br/><br/>3.7 Optical Fiber Sensing Applications 49<br/><br/>3.7.1 Application in the Medicinal Field 50<br/><br/>3.7.2 Application in the Agriculture Field 50<br/><br/>3.7.3 Application in Civil Infrastructure 50<br/><br/>3.8 Conclusion 51<br/><br/>References 51<br/><br/>4 Defective and Failure Sensor Detection and Removal in a Wireless Sensor Network 53<br/>Prasannavenkatesan Theerthagiri<br/><br/>4.1 Introduction 53<br/><br/>4.2 Related Works 55<br/><br/>4.3 Proposed Detection and Elimination Approach 56<br/><br/>4.3.1 Scanning Algorithm for Cut Tracking (SCT) 63<br/><br/>4.3.2 Eliminate Faulty Sensor Algorithm (EFS) 64<br/><br/>4.4 Results and Discussion 66<br/><br/>4.5 Performance Evaluation 68<br/><br/>4.6 Conclusion 70<br/><br/>References 71<br/><br/>5 Optical Fiber and Prime Optical Devices for Optical Communication 75<br/>Srividya P.<br/><br/>5.1 Introduction 76<br/><br/>5.2 Optic Fiber Systems Development 77<br/><br/>5.3 Optical Fiber Transmission Link 77<br/><br/>5.4 Optical Sources Suited for Optical Fiber Communication 79<br/><br/>5.5 LED as Optical Source 80<br/><br/>5.6 Laser as Light Source 84<br/><br/>5.7 Optical Fiber 86<br/><br/>5.8 Fiber Materials 89<br/><br/>5.9 Benefits of Optical Fiber 90<br/><br/>5.10 Drawbacks of Optical Fiber 90<br/><br/>5.11 Recent Advancements in Fiber Technology 90<br/><br/>5.12 Photodetector 92<br/><br/>5.13 Future of Optical Fiber Communication 95<br/><br/>5.14 Applications of Optical Fibers in the Industry 96<br/><br/>5.15 Conclusion 97<br/><br/>References 97<br/><br/>6 Evaluation of Lower Layer Parameters in Body Area Networks 99<br/>Abhilash Hedge and Durga Prasad<br/><br/>6.1 Introduction 100<br/><br/>6.2 Problem Definition 101<br/><br/>6.3 Baseline MAC in IEEE 802.15.6 102<br/><br/>6.4 Ultra Wideband (UWB) PHY 103<br/><br/>6.5 Castalia 103<br/><br/>6.5.1 Features 103<br/><br/>6.6 Methodology 105<br/><br/>6.6.1 Simulation Method in Castalia 105<br/><br/>6.6.2 Hardware Methodology 105<br/><br/>6.7 Results and Discussion 106<br/><br/>6.8 Hardware Setup Using Bluetooth Module 118<br/><br/>6.9 Hardware Setup Using ESP 12-E 118<br/><br/>6.10 Conclusions 122<br/><br/>References 122<br/><br/>7 Analyzing a Microstrip Antenna Sensor Design for Achieving Biocompatibity 125<br/>Sonam Gour, Abha Sharma and Amit Rathi<br/><br/>7.1 Introduction 125<br/><br/>7.2 Designing of Biomedical Antenna 126<br/><br/>7.3 Sensing Device for Biomedical Application 128<br/><br/>7.4 Conclusion 133<br/><br/>References 133<br/><br/>8 Photonic Crystal Based Routers for All Optical Communication Networks 137<br/>T. Sridarshini, Shanmuga Sundar Dhanabalan, V.R. Balaji, A. Manjula, S. Indira Gandhi and A. Sivanantha Raja<br/><br/>8.1 Introduction 138<br/><br/>8.2 Photonic Crystals 140<br/><br/>8.2.1 1D Photonic Crystals 140<br/><br/>8.2.2 2D Photonic Crystals 141<br/><br/>8.2.3 3D Photonic Crystals 142<br/><br/>8.2.4 Photonic Bandgap 142<br/><br/>8.2.5 Applications 144<br/><br/>8.3 Routers 145<br/><br/>8.4 Micro Ring Resonators 145<br/><br/>8.5 Optical Routers 147<br/><br/>8.5.1 Routers Based on PCRR 147<br/><br/>8.5.2 N x N Router Structures 149<br/><br/>8.5.2.1 3 x 3 Router 150<br/><br/>8.5.2.2 4 x 4 Router 151<br/><br/>8.5.2.3 6 x 6 Router 154<br/><br/>8.5.3 Routers Based on PC Line Defect 157<br/><br/>8.6 Summary 159<br/><br/>References 160<br/><br/>9 Fiber Optic Communication: Evolution, Technology, Recent Developments, and Future Trends 163<br/>Dankan G. Veeranna, M. Nagabushanam, Sridhara S. Boraiah, Ramesha Muniyappa and Devananda S. Narayanappa<br/><br/>9.1 Introduction 164<br/><br/>9.2 Basic Principles 167<br/><br/>9.3 Future Trends in Fiber Optics Communication 171<br/><br/>9.4 Advantages 174<br/><br/>9.5 Conclusion 176<br/><br/>References 177<br/><br/>10 Difficulties of Fiber Optic Setup and Maintenance in a Developing Nation 179<br/>Dankan G. Veeranna, M. Nagabushanam, Sridhara S. Boraiah, Ramesha Muniyappa and Devananda S. Narayanappa<br/><br/>10.1 Introduction 180<br/><br/>10.2 Related Works 181<br/><br/>10.3 Fiber Optic Cable 182<br/><br/>10.3.1 Single-Mode Cable 182<br/><br/>10.3.2 Multimode Cable 183<br/><br/>10.3.2.1 Step-Index Multimode Fiber 183<br/><br/>10.3.2.2 Graded-Index Multimode Fiber 183<br/><br/>10.3.3 Deployed Fiber Optics Cable 184<br/><br/>10.4 Fiber Optics Cable Deployment Strategies 184<br/><br/>10.4.1 Aerial Installation 184<br/><br/>10.4.2 Underground Installation 185<br/><br/>10.4.2.1 Direct-Buried 185<br/><br/>10.4.2.2 Installation in Duct 185<br/><br/>10.5 Deployment of Fiber Optics Throughout the World 186<br/><br/>10.5.1 Fiber Optics Deployment in India 187<br/><br/>10.5.2 Submarine Fiber Optic in India 187<br/><br/>10.5.3 Installation of Fiber Optic Cable in the Inland 188<br/><br/>10.6 Fiber Deployment Challenges 188<br/><br/>10.6.1 Deploying Fiber has a Number of Technical Difficulties 188<br/><br/>10.6.2 Right of Way 189<br/><br/>10.6.3 Administrative Challenges 189<br/><br/>10.6.4 Post-Fiber Deployment Management 190<br/><br/>10.6.5 Fiber Optic Cable Deployment and Management Standards and Best Practices 191<br/><br/>10.7 Conclusion 191<br/><br/>References 191<br/><br/>11 Machine Learning-Enabled Flexible Optical Transport Networks 193<br/>Sridhar Iyer, Rahul Jashvantbhai Pandya, N. Jeyakkannan and C. Karthik<br/><br/>11.1 Introduction 194<br/><br/>11.2 Review of SDM-EON Physical Models 198<br/><br/>11.2.1 Optical Fibers for SDM-EON 198<br/><br/>11.2.2 Switching Techniques for SDM-EON 200<br/><br/>11.3 Review of SDM-EON Resource Assignment Techniques 205<br/><br/>11.4 Research Challenges in SDM-EONs 209<br/><br/>11.5 Conclusion 210<br/><br/>References 211<br/><br/>12 Role of Wavelength Division Multiplexing in Optical Communication 217<br/>P. Gunasekaran, A. Azhagu Jaisudhan Pazhani, A. Rameshbabu and B. Kannan<br/><br/>12.1 Introduction 218<br/><br/>12.2 Modules of an Optical Communication System 219<br/><br/>12.2.1 How a Fiber Optic Communication Works? 220<br/><br/>12.2.2 Codes of Fiber Optic Communication System 220<br/><br/>12.2.2.1 Dense Light Source 221<br/><br/>12.2.2.2 Low Loss Optical Fiber 221<br/><br/>12.2.3 Photo Detectors 223<br/><br/>12.3 Wavelength-Division Multiplexing (WDM) 223<br/><br/>12.3.1 Transceivers – Transmitting Data as Light 224<br/><br/>12.3.2 Multiplexers Enhancing the Use of Fiber Channels 225<br/><br/>12.3.3 Categories of WDM 225<br/><br/>12.4 Modulation Formats in WDM Systems 226<br/><br/>12.4.1 Optical Modulator 227<br/><br/>12.4.1.1 Direct Modulation 227<br/><br/>12.4.1.2 External Modulation 227<br/><br/>12.4.2 Modulation Formats 228<br/><br/>12.4.2.1 Non Return to Zero (NRZ) 229<br/><br/>12.4.2.2 Return to Zero (RZ) 230<br/><br/>12.4.2.3 Chirped RZ (CRZ) 231<br/><br/>12.4.2.4 Carrier Suppressed RZ (CSRZ) 232<br/><br/>12.4.2.5 Differential Phase Shift Key (DPSK) 232<br/><br/>12.4.3 Uses of Wavelength Division Multiplexing 233<br/><br/>References 233<br/><br/>13 Optical Ultra-Sensitive Nanoscale Biosensor Design for Water Analysis 235<br/>Shaikh Afzal and Manju Devi<br/><br/>13.1 Introduction 236<br/><br/>13.2 Related Work or Literature Survey 237<br/><br/>13.2.1 B. Cereus Spores’ Study for Water Quality 237<br/><br/>13.2.2 History Use of Optical Property for Biosensing 238<br/><br/>13.2.3 Photonic Crystal 239<br/><br/>13.3 Tools and Techniques 240<br/><br/>13.3.1 Opti FDTD 240<br/><br/>13.3.2 EM Wave Equation 240<br/><br/>13.3.3 Optical Ring Resonator 241<br/><br/>13.3.4 Output Power Computation 242<br/><br/>13.4 Proposed Design 243<br/><br/>13.4.1 Circular Resonator PHC Biosensor 243<br/><br/>13.4.2 Triangular Structure PHC Biosensor 244<br/><br/>13.5 Simulation 244<br/><br/>13.6 Result and Analysis 244<br/><br/>13.7 Conclusion and Future Scope 248<br/><br/>References 249<br/><br/>14 A Study on Connected Cars–V2V Communication 251<br/>Chandra Singh, Sachin C. N. Shetty, Manjunatha Badiger and Nischitha<br/><br/>14.1 Introduction 251<br/><br/>14.2 Literature Survey 252<br/><br/>14.3 Software Description 255<br/><br/>14.4 Methodology 256<br/><br/>14.5 Working 257<br/><br/>14.6 Advantages and Applications 263<br/><br/>14.7 Conclusion and Future Scope 263<br/><br/>Future Scope 264<br/><br/>References 264<br/><br/>15 Broadband Wireless Network Era in Wireless Communication – Routing Theory and Practices 267<br/>R. Prabha, G. A. Senthil, S. K. B. Sangeetha, S.U. Suganthi and D. Roopa<br/><br/>15.1 Introduction 268<br/><br/>15.2 Outline of Broadband Wireless Networking 270<br/><br/>15.2.1 Type of Broadband Wireless Networks 270<br/><br/>15.2.1.1 Fixed Networks 270<br/><br/>15.2.1.2 The Broadband Mobile Wireless Networks 271<br/><br/>15.2.2 BWN Network Structure 272<br/><br/>15.2.3 Wireless Broadband Applications 273<br/><br/>15.2.4 Promising Approaches Beyond BWN 273<br/><br/>15.3 Routing Mechanisms 274<br/><br/>15.4 Security Issues and Mechanisms in BWN 276<br/><br/>15.4.1 DoS Attack 276<br/><br/>15.4.2 Distributed Flooding DoS 277<br/><br/>15.4.3 Rogue and Selfish Backbone Devices 277<br/><br/>15.4.4 Authorization Flooding on Backbone Devices 277<br/><br/>15.4.5 Node Deprivation Attack 278<br/><br/>15.5 Conclusion 278<br/><br/>References 278<br/><br/>16 Recent Trends in Optical Communication, Challenges and Opportunities 281<br/>S. Kannadhasan and R. Nagarajan<br/><br/>16.1 Introduction 281<br/><br/>16.2 Optical Fiber Communication 284<br/><br/>16.3 Applications of Optical Communication 286<br/><br/>16.4 Various Sectors of Optical Communication 291<br/><br/>16.5 Conclusion 301<br/><br/>References 302<br/><br/>17 Photonic Communication Systems and Networks 303<br/>Naitik S.T., J.V. Gorabal, Shailesh Shetty, Srinivas P.M. and Girish S.<br/><br/>17.1 Introduction 304<br/><br/>17.2 History of LiFi 305<br/><br/>17.3 LiFi Standards 306<br/><br/>17.4 Related Work 308<br/><br/>17.5 Methodology 324<br/><br/>17.6 Proposed Model 325<br/><br/>17.7 Experiment and Results 326<br/><br/>17.8 Applications 326<br/><br/>17.9 Conclusion 328<br/><br/>Acknowledgment 328<br/><br/>References 328<br/><br/>18 RSA-Based Encryption Approach for Preserving Confidentiality Against Factorization Attacks 331<br/>Raghunandan K. R.<br/><br/>18.1 Introduction 331<br/><br/>18.2 Related Work 333<br/><br/>18.3 Mathematical Preliminary 335<br/><br/>18.4 Proposed System 337<br/><br/>18.5 Performance Analysis 339<br/><br/>18.6 Conclusion 345<br/><br/>References 346<br/><br/>19 Sailfish Optimizer Algorithm (SFO) for Optimized Clustering in Internet of Things (IoT) Related to the Healthcare Industry 349<br/>Battina Srinuvasu Kumar, S.G. Santhi and S. Narayana<br/><br/>19.1 Introduction 350<br/><br/>19.2 Related Works 351<br/><br/>19.3 Proposed Method 352<br/><br/>19.4 System Model 353<br/><br/>19.5 Energy Model 353<br/><br/>19.6 Cluster Formation Using SFO 354<br/><br/>19.7 Results and Discussion 357<br/><br/>19.8 Conclusions 361<br/><br/>References 362<br/><br/>20 Li-Fi Technology and Its Applications 365<br/>Sumiksha Shetty, Smitha A.B. and Roshan Rai<br/><br/>20.1 Introduction 365<br/><br/>20.2 Technology Portrayal 367<br/><br/>20.2.1 Li-Fi Modulation Methods 367<br/><br/>20.3 Distinctive Modulation of Li-Fi 369<br/><br/>20.4 Antiquity of Improvements and Li-Fi Innovation 370<br/><br/>20.5 Li-Fi Technology and Its Advantages 371<br/><br/>20.5.1 Free Spectrum 371<br/><br/>20.5.2 Efficiency 371<br/><br/>20.5.3 Accessibility 372<br/><br/>20.5.4 Complexity 372<br/><br/>20.5.5 Security 372<br/><br/>20.5.6 Safety 372<br/><br/>20.5.7 No Fading 373<br/><br/>20.5.8 Cost-Effective 373<br/><br/>20.6 Confines of Li-Fi Innovation 373<br/><br/>20.6.1 Obstructions 374<br/><br/>20.6.2 High Path Forfeiture 374<br/><br/>20.6.3 Uplink Problems 374<br/><br/>20.6.4 NLOS Problems 374<br/><br/>20.7 Application of Li-Fi Technology 375<br/><br/>20.7.1 Spaces wherein Exploiting of RF would be Controlled 375<br/><br/>20.7.1.1 Hospitals 375<br/><br/>20.7.1.2 Airplanes 375<br/><br/>20.7.1.3 Sensitive Floras 375<br/><br/>20.7.2 Traffic Flow Management 376<br/><br/>20.7.3 Submerged Applications 376<br/><br/>20.7.4 Outdoor Permission to the Cyberspace 376<br/><br/>20.7.5 Educational Tenacities 377<br/><br/>20.7.6 Amalgamation of Wi-Fi vs. Li-Fi 377<br/><br/>20.7.7 Optical Attocell 377<br/><br/>20.7.8 Multiple User Permission 378<br/><br/>References 379<br/><br/>21 Smart Emergency Assistance Using Optics 381<br/>Chandra Singh, Sachin C. N. Shetty, Manjunatha Badiger and Nischitha<br/><br/>21.1 Introduction 381<br/><br/>21.2 Literature Survey 382<br/><br/>21.3 Methodology 385<br/><br/>21.3.1 Block Diagram Description 386<br/><br/>21.3.2 Concept and Overview 387<br/><br/>21.4 Design and Implementation 388<br/><br/>21.5 Results & Discussion 393<br/><br/>21.6 Conclusion 394<br/><br/>References 394<br/><br/>About the Editors 397<br/><br/>Index 399 |
520 ## - SUMMARY, ETC. |
Summary, etc |
Optical networks are an integral part of many of the technologies that we use every day. It is a constantly changing and evolving area, with new materials, processes, and applications coming online almost daily. This book provides a basis for discussing open principles, methods and research problems in the modeling of optical communication networks. It also provides a systematic overview of the state-of-the-art research efforts and potential research directions dealing with optical communication metworks. It also simultaneously focuses on extending the limits of currently used systems encompassing optical and wireless domains and explores novel research on wireless and optical techniques and systems, describing practical implementation activities, results and issues. A handbook on applications for both academia and industry, this exciting new volume includes detailed discussions on real-world case studies on trends and emerging technologies associated with modeling of optical communication networks. This book also describes several numerical models and algorithms for simulation and optimization of optical communication networks. Modeling and optimization presents several opportunities for automating operations and introducing intelligent decision making in network planning and in dynamic control and management of network resources, including issues like connection establishment, self-configuration, and self-optimization, through prediction and estimation by utilizing present network state and historical data. It focuses on extending the limits of currently used systems encompassing optical and wireless domains, and explores the latest developments in applications like photonics, high speed communication systems and networks, visible light communication, nano-photonics, wireless, and MIMO systems. |
545 0# - BIOGRAPHICAL OR HISTORICAL DATA |
Biographical or historical note |
About the Authors<br/>Chandra Singh is an assistant professor in the Department of Electronics and Communication Engineering at the Sahyadri College of Engineering and Management. He is pursuing his PhD from VTU Belagavi, India. He has four patents, published over 25 peer-reviewed publications, and is the editor of seven books.<br/><br/>Rathishchandra R. Gatti, PhD, is a professor and Head of the Department of Mechanical Engineering and Robotics and Automation at the Sahyadri College of Engineering and Management, India. He has four patents, published more than 40 papers in peer-reviewed journals, and has edited seven books. He is also the editor of one journal, and he has over 20 years of industry experience.<br/><br/>K.V.S.S.S.S. SAIRAM, Ph.D, is a professor and head of the Electronics and Communications Engineering Department at NITTE University, India. He has over 23 years of experience in teaching and research, and he has published over 50 papers in scholarly journals, conferences, and workshops. He is a reviewer for several journals, and he has authored three books.<br/><br/>Ashish Singh, PhD, is an associate professor in the Department of Computer and Communication Engineering at NMAM Institute of Technology, Nitte, India. He has 13 years of teaching experience and has published more than 50 research papers in scholarly journals and conferences. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Optical communications. |
Authority record control number |
https://id.loc.gov/authorities/subjects/sh85095142. |
655 #4 - INDEX TERM--GENRE/FORM |
Genre/form data or focus term |
Electronic books. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Singh, Chandra, |
Authority record control number |
https://id.loc.gov/authorities/names/no2023074837 |
Relator term |
editor. |
856 40 - ELECTRONIC LOCATION AND ACCESS |
Uniform Resource Identifier |
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119839569 |
Link text |
Full text is available at Wiley Online Library Click here to view |
942 ## - ADDED ENTRY ELEMENTS |
Source of classification or shelving scheme |
|
Item type |
EBOOK |