Geostatistical functional data analysis / (Record no. 91755)

000 -LEADER
fixed length control field 17076cam a2200505Ii 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250812103633.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m o d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr |||||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250812s2021 njum ob u001 0 eng
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119387848
Qualifying information (hardback)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119387916
Qualifying information (electronic bk. : oBook)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119387914
Qualifying information (electronic bk. : oBook)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119387886
Qualifying information (epub)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119387884
Qualifying information (epub)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119387909
Qualifying information (adobe pdf)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119387906
Qualifying information (adobe pdf)
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1002/9781119387916
Source of number or code doi
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1253442473
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
042 ## - AUTHENTICATION CODE
Authentication code pcc
050 00 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QE33.2.S82
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 551.072/7
Edition number 23
245 00 - TITLE STATEMENT
Title Geostatistical functional data analysis /
Statement of responsibility, etc edited by Jorge Mateu, Ramon Giraldo.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, NJ :
Name of publisher, distributor, etc Wiley,
Date of publication, distribution, etc ©2021.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource.
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent.
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia.
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier.
490 1# - SERIES STATEMENT
Series statement Wiley series in probability and statistics.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note Table of Contents<br/>List of Contributors xiii<br/><br/>Foreword xvi<br/><br/>1 Introduction to Geostatistical Functional Data Analysis 1<br/>Jorge Mateu and Ramón Giraldo<br/><br/>1.1 Spatial Statistics 1<br/><br/>1.2 Spatial Geostatistics 7<br/><br/>1.2.1 Regionalized Variables 7<br/><br/>1.2.2 Random Functions 7<br/><br/>1.2.3 Stationarity and Intrinsic Hypothesis 9<br/><br/>1.3 Spatiotemporal Geostatistics 12<br/><br/>1.3.1 Relevant Spatiotemporal Concepts 12<br/><br/>1.3.2 Spatiotemporal Kriging 16<br/><br/>1.3.3 Spatiotemporal Covariance Models 17<br/><br/>1.4 Functional Data Analysis in Brief 18<br/><br/>References 22<br/><br/>Part I Mathematical and Statistical Foundations 27<br/><br/>2 Mathematical Foundations of Functional Kriging in Hilbert Spaces and Riemannian Manifolds 29<br/>Alessandra Menafoglio, Davide Pigoli, and Piercesare Secchi<br/><br/>2.1 Introduction 29<br/><br/>2.2 Definitions and Assumptions 30<br/><br/>2.3 Kriging Prediction in Hilbert Space: A Trace Approach 33<br/><br/>2.3.1 Ordinary and Universal Kriging in Hilbert Spaces 33<br/><br/>2.3.2 Estimating the Drift 36<br/><br/>2.3.3 An Example: Trace-Variogram in Sobolev Spaces 37<br/><br/>2.3.4 An Application to Nonstationary Prediction of Temperatures Profiles 39<br/><br/>2.4 An Operatorial Viewpoint to Kriging 42<br/><br/>2.5 Kriging for Manifold-Valued Random Fields 45<br/><br/>2.5.1 Residual Kriging 45<br/><br/>2.5.2 An Application to Positive Definite Matrices 47<br/><br/>2.5.3 Validity of the Local Tangent Space Approximation 49<br/><br/>2.6 Conclusion and Further Research 53<br/><br/>References 53<br/><br/>3 Universal, Residual, and External Drift Functional Kriging 55<br/>Maria Franco-Villoria and Rosaria Ignaccolo<br/><br/>3.1 Introduction 56<br/><br/>3.2 Universal Kriging for Functional Data (UKFD) 56<br/><br/>3.3 Residual Kriging for Functional Data (ResKFD) 58<br/><br/>3.4 Functional Kriging with External Drift (FKED) 60<br/><br/>3.5 Accounting for Spatial Dependence in Drift Estimation 61<br/><br/>3.5.1 Drift Selection 62<br/><br/>3.6 Uncertainty Evaluation 62<br/><br/>3.7 Implementation Details in R 64<br/><br/>3.7.1 Example: Air Pollution Data 64<br/><br/>3.8 Conclusions 69<br/><br/>References 71<br/><br/>4 Extending Functional Kriging When Data Are Multivariate Curves: Some Technical Considerations and Operational Solutions 73<br/>David Nerini, Claude Manté, and Pascal Monestiez<br/><br/>4.1 Introduction 73<br/><br/>4.2 Principal Component Analysis for Curves 74<br/><br/>4.2.1 Karhunen–Loève Decomposition 74<br/><br/>4.2.2 Dealing with a Sample 76<br/><br/>4.3 Functional Kriging in a Nutshell 78<br/><br/>4.3.1 Solution Based on Basis Functions 79<br/><br/>4.3.2 Estimation of Spatial Covariances 81<br/><br/>4.4 An Example with the Precipitation Observations 82<br/><br/>4.4.1 Fitting Variogram Model 83<br/><br/>4.4.2 Making Prediction 83<br/><br/>4.5 Functional Principal Component Kriging 85<br/><br/>4.6 Multivariate Kriging with Functional Data 88<br/><br/>4.6.1 Multivariate FPCA 91<br/><br/>4.6.2 MFPCA Displays 93<br/><br/>4.6.3 Multivariate Functional Principal Component Kriging 94<br/><br/>4.6.4 Mixing Temperature and Precipitation Curves 96<br/><br/>4.7 Discussion 98<br/><br/>4.A Appendices 100<br/><br/>4.A.1 Computation of the Kriging Variance 100<br/><br/>References 102<br/><br/>5 Geostatistical Analysis in Bayes Spaces: Probability Densities and Compositional Data 104<br/>Alessandra Menafoglio, Piercesare Secchi, and Alberto Guadagnini<br/><br/>5.1 Introduction and Motivations 104<br/><br/>5.2 Bayes Hilbert Spaces: Natural Spaces for Functional Compositions 105<br/><br/>5.3 A Motivating Case Study: Particle-Size Data in Heterogeneous Aquifers –Data Description 108<br/><br/>5.4 Kriging Stationary Functional Compositions 110<br/><br/>5.4.1 Model Description 110<br/><br/>5.4.2 Data Preprocessing 112<br/><br/>5.4.3 An Example of Application 113<br/><br/>5.4.4 Uncertainty Assessment 116<br/><br/>5.5 Analyzing Nonstationary Fields of FCs 119<br/><br/>5.6 Conclusions and Perspectives 123<br/><br/>References 124<br/><br/>6 Spatial Functional Data Analysis for Probability Density Functions: Compositional Functional Data vs. Distributional Data Approach 128<br/>Elvira Romano, Antonio Irpino, and Jorge Mateu<br/><br/>6.1 FDA and SDA When Data Are Densities 130<br/><br/>6.1.1 Features of Density Functions as Compositional Functional Data 131<br/><br/>6.1.2 Features of Density Functions as Distributional Data 135<br/><br/>6.2 Measures of Spatial Association for Georeferenced Density Functions 138<br/><br/>6.2.1 Identification of Spatial Clusters by Spatial Association Measures for Density Functions 139<br/><br/>6.3 Real Data Analysis 141<br/><br/>6.3.1 The SDA Distributional Approach 143<br/><br/>6.3.2 The Compositional–Functional Approach 145<br/><br/>6.3.3 Discussion 147<br/><br/>6.4 Conclusion 149<br/><br/>Acknowledgments 151<br/><br/>References 151<br/><br/>Part II Statistical Techniques for Spatially Correlated Functional Data 155<br/><br/>7 Clustering Spatial Functional Data 157<br/>Vincent Vandewalle, Cristian Preda, and Sophie Dabo-Niang<br/><br/>7.1 Introduction 157<br/><br/>7.2 Model-Based Clustering for Spatial Functional Data 158<br/><br/>7.2.1 The Expectation–Maximization (EM) Algorithm 160<br/><br/>7.2.1.1 E Step 161<br/><br/>7.2.1.2 M Step 161<br/><br/>7.2.2 Model Selection 161<br/><br/>7.3 Descendant Hierarchical Classification (HC) Based on Centrality Methods 162<br/><br/>7.3.1 Methodology 164<br/><br/>7.4 Application 165<br/><br/>7.4.1 Model-Based Clustering 167<br/><br/>7.4.2 Hierarchical Classification 169<br/><br/>7.5 Conclusion 171<br/><br/>References 172<br/><br/>8 Nonparametric Statistical Analysis of Spatially Distributed Functional Data 175<br/>Sophie Dabo-Niang, Camille Ternynck, Baba Thiam, and Anne-Françoise Yao<br/><br/>8.1 Introduction 175<br/><br/>8.2 Large Sample Properties 178<br/><br/>8.2.1 Uniform Almost Complete Convergence 180<br/><br/>8.3 Prediction 181<br/><br/>8.4 Numerical Results 184<br/><br/>8.4.1 Bandwidth Selection Procedure 184<br/><br/>8.4.2 Simulation Study 185<br/><br/>8.5 Conclusion 193<br/><br/>8.A Appendix 194<br/><br/>8.A.1 Some Preliminary Results for the Proofs 194<br/><br/>8.A.2 Proofs 196<br/><br/>8.A.2.1 Proof of Theorem 8.1 196<br/><br/>8.A.2.2 Proof of Lemma A.3 196<br/><br/>8.A.2.3 Proof of Lemma A.4 196<br/><br/>8.A.2.4 Proof of Lemma A.5 201<br/><br/>8.A.2.5 Proof of Lemma A.6 201<br/><br/>8.A.2.6 Proof of Theorem 8.2 202<br/><br/>References 207<br/><br/>9 A Nonparametric Algorithm for Spatially Dependent Functional Data: Bagging Voronoi for Clustering, Dimensional Reduction, and Regression 211<br/>Valeria Vitelli, Federica Passamonti, Simone Vantini, and Piercesare Secchi<br/><br/>9.1 Introduction 211<br/><br/>9.2 The Motivating Application 212<br/><br/>9.2.1 Data Preprocessing 214<br/><br/>9.3 The Bagging Voronoi Strategy 216<br/><br/>9.4 Bagging Voronoi Clustering (BVClu) 218<br/><br/>9.4.1 BVClu of the Telecom Data 221<br/><br/>9.4.1.1 Setting the BVClu Parameters 221<br/><br/>9.4.1.2 Results 223<br/><br/>9.5 Bagging Voronoi Dimensional Reduction (BVDim) 223<br/><br/>9.5.1 BVDim of the Telecom Data 225<br/><br/>9.5.1.1 Setting the BVDim Parameters 225<br/><br/>9.5.1.2 Results 227<br/><br/>9.6 Bagging Voronoi Regression (BVReg) 231<br/><br/>9.6.1 Covariate Information: The DUSAF Data 232<br/><br/>9.6.2 BVReg of the Telecom Data 234<br/><br/>9.6.2.1 Setting the BVReg Parameters 234<br/><br/>9.6.2.2 Results 235<br/><br/>9.7 Conclusions and Discussion 236<br/><br/>References 239<br/><br/>10 Nonparametric Inference for Spatiotemporal Data Based on Local Null Hypothesis Testing for Functional Data 242<br/>Alessia Pini and Simone Vantini<br/><br/>10.1 Introduction 242<br/><br/>10.2 Methodology 244<br/><br/>10.2.1 Comparing Means of Two Functional Populations 244<br/><br/>10.2.2 Extensions 248<br/><br/>10.2.2.1 Multiway FANOVA 249<br/><br/>10.3 Data Analysis 250<br/><br/>10.4 Conclusion and FutureWorks 256<br/><br/>References 258<br/><br/>11 Modeling Spatially Dependent Functional Data by Spatial Regression with Differential Regularization 260<br/>Mara S. Bernardi and Laura M. Sangalli<br/><br/>11.1 Introduction 260<br/><br/>11.2 Spatial Regression with Differential Regularization for Geostatistical Functional Data 264<br/><br/>11.2.1 A Separable Spatiotemporal Basis System 265<br/><br/>11.2.2 Discretization of the Penalized Sum-of-Square Error Functional 268<br/><br/>11.2.3 Properties of the Estimators 271<br/><br/>11.2.4 Model Without Covariates 273<br/><br/>11.2.5 An Alternative Formulation of the Model 274<br/><br/>11.3 Simulation Studies 274<br/><br/>11.4 An Illustrative Example: Study of the Waste Production in Venice Province 278<br/><br/>11.4.1 The Venice Waste Dataset 278<br/><br/>11.4.2 Analysis of Venice Waste Data by Spatial Regression with Differential Regularization 279<br/><br/>11.5 Model Extensions 282<br/><br/>References 283<br/><br/>12 Quasi-maximum Likelihood Estimators for Functional Linear Spatial Autoregressive Models 286<br/>Mohamed-Salem Ahmed, Laurence Broze, Sophie Dabo-Niang, and Zied Gharbi<br/><br/>12.1 Introduction 286<br/><br/>12.2 Model 288<br/><br/>12.2.1 Truncated Conditional Likelihood Method 291<br/><br/>12.3 Results and Assumptions 293<br/><br/>12.4 Numerical Experiments 298<br/><br/>12.4.1 Monte Carlo Simulations 298<br/><br/>12.4.2 Real Data Application 305<br/><br/>12.5 Conclusion 312<br/><br/>12.A Appendix 313<br/><br/>Proof of Proposition 12.A.1 313<br/><br/>Proof of Theorem 12.1 314<br/><br/>Proof of Theorem 12.2 317<br/><br/>Proof of Theorem 12.3 319<br/><br/>Proof of Lemma 12.A.2 322<br/><br/>Proof of Lemma 12.A.3 322<br/><br/>Proof of Lemma 12.A.5 323<br/><br/>References 325<br/><br/>13 Spatial Prediction and Optimal Sampling for Multivariate Functional Random Fields 329<br/>Martha Bohorquez, Ramón Giraldo, and Jorge Mateu<br/><br/>13.1 Background 329<br/><br/>13.1.1 Multivariate Spatial Functional Random Fields 329<br/><br/>13.1.2 Functional Principal Components 330<br/><br/>13.1.3 The Spatial Random Field of Scores 331<br/><br/>13.2 Functional Kriging 332<br/><br/>13.2.1 Ordinary Functional Kriging (OFK) 332<br/><br/>13.2.2 Functional Kriging Using Scalar Simple Kriging of the Scores (FKSK) 333<br/><br/>13.2.3 Functional Kriging Using Scalar Simple Cokriging of the Scores (FKCK) 333<br/><br/>13.3 Functional Cokriging 336<br/><br/>13.3.1 Cokriging with Two Functional Random Fields 336<br/><br/>13.3.2 Cokriging with P Functional Random Fields 338<br/><br/>13.4 Optimal Sampling Designs for Spatial Prediction of Functional Data 340<br/><br/>13.4.1 Optimal Spatial Sampling for OFK 341<br/><br/>13.4.2 Optimal Spatial Sampling for FKSK 341<br/><br/>13.4.3 Optimal Spatial Sampling for FKCK 342<br/><br/>13.4.4 Optimal Spatial Sampling for Functional Cokriging 343<br/><br/>13.5 Real Data Analysis 344<br/><br/>13.6 Discussion and Conclusions 348<br/><br/>References 348<br/><br/>Part III Spatio–Temporal Functional Data 351<br/><br/>14 Spatio–temporal Functional Data Analysis 353<br/>Gregory Bopp, John Ensley, Piotr Kokoszka, and Matthew Reimherr<br/><br/>14.1 Introduction 353<br/><br/>14.2 Randomness Test 355<br/><br/>14.3 Change-Point Test 359<br/><br/>14.4 Separability Tests 362<br/><br/>14.5 Trend Tests 365<br/><br/>14.6 Spatio–Temporal Extremes 369<br/><br/>References 373<br/><br/>15 A Comparison of Spatiotemporal and Functional Kriging Approaches 375<br/>Johan Strandberg, Sara Sjöstedt de Luna, and Jorge Mateu<br/><br/>15.1 Introduction 375<br/><br/>15.2 Preliminaries 376<br/><br/>15.3 Kriging 378<br/><br/>15.3.1 Functional Kriging 378<br/><br/>15.3.1.1 Ordinary Kriging for Functional Data 378<br/><br/>15.3.1.2 Pointwise Functional Kriging 380<br/><br/>15.3.1.3 Functional Kriging Total Model 381<br/><br/>15.3.2 Spatiotemporal Kriging 382<br/><br/>15.3.3 Evaluation of Kriging Methods 384<br/><br/>15.4 A Simulation Study 385<br/><br/>15.4.1 Separable 385<br/><br/>15.4.2 Non-separable 390<br/><br/>15.4.3 Nonstationary 391<br/><br/>15.5 Application: Spatial Prediction of Temperature Curves in the Maritime Provinces of Canada 394<br/><br/>15.6 Concluding Remarks 400<br/><br/>References 400<br/><br/>16 From Spatiotemporal Smoothing to Functional Spatial Regression: a Penalized Approach 403<br/>Maria Durban, Dae-Jin Lee, María del Carmen Aguilera Morillo, and Ana M. Aguilera<br/><br/>16.1 Introduction 403<br/><br/>16.2 Smoothing Spatial Data via Penalized Regression 404<br/><br/>16.3 Penalized Smooth Mixed Models 407<br/><br/>16.4 P-spline Smooth ANOVA Models for Spatial and Spatiotemporal data 409<br/><br/>16.4.1 Simulation Study 411<br/><br/>16.5 P-spline Functional Spatial Regression 413<br/><br/>16.6 Application to Air Pollution Data 415<br/><br/>16.6.1 Spatiotemporal Smoothing 416<br/><br/>16.6.2 Spatial Functional Regression 416<br/><br/>Acknowledgments 421<br/><br/>References 421<br/><br/>Index 424
520 ## - SUMMARY, ETC.
Summary, etc "Spatial functional data (SFD) arises when we have functional data (curves or images) at each one of the several sites or areas of a region. Statistics for SFD is concerned with the application of methods for modeling this type of data. All the fields of spatial statistics (point patterns, areal data and geostatistics) have been adapted to the study of SFD. For example, in point patterns analysis, the functional mark correlation function is proposed as a counterpart of the mark correlation function; in areal data, analysis of a functional areal dataset consisting of population pyramids for 38 neighborhoods in Barcelona (Spain) has been proposed; and in geostatistical analysis diverse approaches for kriging of functional data have been given. In the last few years, some alternatives have been adapted for considering models for SFD, where the estimation of the spatial correlation is of interest. When a functional variable is measured in sites of a region, i.e. when there is a realisation of a functional random field (spatial functional stochastic process), it is important to test for significant spatial autocorrelation and study this correlation if present. Assessing whether SFD are or are not spatially correlated allows us to properly formulate a functional model. However, searching in the literature, it is clear that amongst the several categories of spatial functional methods, functional geostatistics has been much more developed considering both new methodological approaches and analysis of a wide range of case studies covering a wealth of varied fields of applications"--
Assigning source Provided by publisher.
545 0# - BIOGRAPHICAL OR HISTORICAL DATA
Biographical or historical note About the Authors<br/>Jorge Mateu is a full professor of Statistics at the Department of Mathematics of University Jaume I of Castellon, where he has worked for the past 20 years. His main fields of interest are stochastic processes in their wide sense with a particular focus on spatial and spatio-temporal point processes and geostatistics. He has published more than 150 papers in peer-reviewed international journals, and he is co-author of several proceedings and research books. He has organised several international conferences with a focus on modelling space-time processes, and leads the organising committee of a series of biannual conferences (called METMA, eight by now) co-sponsorised by TIES, for which he was also Secretary. He currently sits on the editorial boards of Spatial Statistics, Journal of Environmental Statistics, Stochastic Environmental Research and Risk Assessment, Environmetrics, and Journal of Agricultural, Biological, and Environmental Statistics. Prof. Mateu is also director of the Unit "Statistical Modelling of Crime Data", based in the Department of Mathematics, University Jaume I of Castellon, and he is co-director of the Erasmus Mundus Master in Geospatial Technologies, funded by the European Commission.<br/><br/>Ramon Giraldo is currently a full professor of Statistics at the Department of Statistics at the Universidad Nacional de Colombia, where he has worked for more than 10 years. His main fields of interest are non-parametric statistics, functional data analysis and spatial and spatio-temporal geostatistics. He has published more than 20 papers in peer-reviewed international journals, and he has been supervisor of 2 Doctoral Thesis and more than 10 Master Thesis. He has been Academic Coordinator, Head of Department and Research Coordinator at the Statistics Department of Universidad Nacional de Colombia. He is currently Editor-in-Chief of Colombian Journal of Statistics.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Geology
General subdivision Statistical methods.
Authority record control number http://id.loc.gov/authorities/subjects/sh85054051.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Kriging.
Authority record control number http://id.loc.gov/authorities/subjects/sh94004154.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Spatial analysis (Statistics)
Authority record control number http://id.loc.gov/authorities/subjects/sh85126347.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Functional analysis.
Authority record control number http://id.loc.gov/authorities/subjects/sh85052312.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Mateu, Jorge,
Authority record control number http://id.loc.gov/authorities/names/no2003002644
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Giraldo, Ramon,
Authority record control number http://id.loc.gov/authorities/names/no2021061955
Relator term editor.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Wiley series in probability and statistics.
Authority record control number http://id.loc.gov/authorities/names/n98048834.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781119387916
Link text Full text is available at Wiley Online Library Click here to view
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Source of acquisition Full call number Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2025-08-12 ALBASA Consortium 551.072/7 2025-08-12 2025-08-12 EBOOK