Balanis' advanced engineering electromagnetics / (Record no. 91574)

000 -LEADER
fixed length control field 11207cam a2200409 i 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250731161005.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr aa aaaaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250731s2024 njum b a001 0 eng c
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2023023649
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781394180011
Qualifying information hardcover
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1394180012
Qualifying information hardcover
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9781394180028
Qualifying information electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9781394180035
Qualifying information electronic publication
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1399568531
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
042 ## - AUTHENTICATION CODE
Authentication code pcc
092 ## - LOCALLY ASSIGNED DEWEY CALL NUMBER (OCLC)
Classification number 621.34
Item number B171B
100 1# - MAIN ENTRY--PERSONAL NAME
Preferred name for the person Balanis, Constantine A.,
Dates associated with a name 1938-
Relator term author.
245 10 - TITLE STATEMENT
Title Balanis' advanced engineering electromagnetics /
Statement of responsibility, etc Constantine A. Balanis.
250 ## - EDITION STATEMENT
Edition statement Third edition.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, New Jersey :
Name of publisher, distributor, etc John Wiley & Sons Inc.,
Date of publication, distribution, etc [2024]
264 #4 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Date of publication, distribution, etc ©2024
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (xxiii, 1110 pages) :
Other physical details illustrations ;
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rda
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note Table of Contents<br/>Preface xix<br/><br/>About the Companion Website xxiii<br/><br/>1 Time-Varying and Time-Harmonic Electromagnetic Fields 1<br/><br/>1.1 Introduction 1<br/><br/>1.2 Maxwell’s Equations 2<br/><br/>1.3 Constitutive Parameters and Relations 5<br/><br/>1.4 Circuit-Field Relations 7<br/><br/>1.5 Boundary Conditions 12<br/><br/>1.6 Power and Energy 18<br/><br/>1.7 Time-Harmonic Electromagnetic Fields 21<br/><br/>1.8 Multimedia 29<br/><br/>References 29<br/><br/>Problems 30<br/><br/>2 Electrical Properties of Matter 41<br/><br/>2.1 Introduction 41<br/><br/>2.2 Dielectrics, Polarization, and Permittivity 43<br/><br/>2.3 Magnetics, Magnetization, and Permeability 50<br/><br/>2.4 Current, Conductors, and Conductivity 57<br/><br/>2.5 Semiconductors 61<br/><br/>2.6 Superconductors 66<br/><br/>2.7 Metamaterials 68<br/><br/>2.8 Linear, Homogeneous, Isotropic, and Nondispersive Media 69<br/><br/>2.9 A.C. Variations in Materials 70<br/><br/>2.10 Multimedia 92<br/><br/>References 92<br/><br/>Problems 93<br/><br/>3 Wave Equation and Its Solutions 103<br/><br/>3.1 Introduction 103<br/><br/>3.2 Time-Varying Electromagnetic Fields 103<br/><br/>3.3 Time-Harmonic Electromagnetic Fields 105<br/><br/>3.4 Solution to the Wave Equation 106<br/><br/>3.5 Multimedia 125<br/><br/>References 125<br/><br/>Problems 125<br/><br/>4 Wave Propagation and Polarization 127<br/><br/>4.1 Introduction 127<br/><br/>4.2 Transverse Electromagnetic Modes 127<br/><br/>4.3 Transverse Electromagnetic Modes in Lossy Media 142<br/><br/>4.4 Polarization 151<br/><br/>4.5 Multimedia 171<br/><br/>References 171<br/><br/>Problems 172<br/><br/>5 Reflection and Transmission 179<br/><br/>5.1 Introduction 179<br/><br/>5.2 Normal Incidence—Lossless Media 179<br/><br/>5.3 Oblique Incidence—Lossless Media 183<br/><br/>5.4 Lossy Media 204<br/><br/>5.5 Reflection and Transmission of Multiple Interfaces 212<br/><br/>5.6 Polarization Characteristics on Reflection 228<br/><br/>5.7 Metamaterials 235<br/><br/>5.8 Multimedia 253<br/><br/>References 254<br/><br/>Problems 256<br/><br/>6 Auxiliary Vector Potentials, Construction of Solutions, and Radiation and Scattering Equations 271<br/><br/>6.1 Introduction 271<br/><br/>6.2 The Vector Potential A 272<br/><br/>6.3 The Vector Potential F 274<br/><br/>6.4 The Vector Potentials A and F 275<br/><br/>6.5 Construction of Solutions 277<br/><br/>6.6 Solution of the Inhomogeneous Vector Potential Wave Equation 291<br/><br/>6.7 Far-Field Radiation 295<br/><br/>6.8 Radiation and Scattering Equations 296<br/><br/>6.9 Multimedia 317<br/><br/>References 317<br/><br/>Problems 318<br/><br/>7 Electromagnetic Theorems and Principles 323<br/><br/>7.1 Introduction 323<br/><br/>7.2 Duality Theorem 323<br/><br/>7.3 Uniqueness Theorem 325<br/><br/>7.4 Image Theory 327<br/><br/>7.5 Reciprocity Theorem 335<br/><br/>7.6 Reaction Theorem 337<br/><br/>7.7 Volume Equivalence Theorem 338<br/><br/>7.8 Surface Equivalence Theorem: Huygens’ Principle 340<br/><br/>7.9 Induction Theorem (Induction Equivalent) 345<br/><br/>7.10 Physical Equivalent and Physical Optics Equivalent 349<br/><br/>7.11 Induction and Physical Equivalent Approximations 351<br/><br/>7.12 Multimedia 356<br/><br/>References 356<br/><br/>Problems 357<br/><br/>8 Rectangular Cross-Section Waveguides and Cavities 365<br/><br/>8.1 Introduction 365<br/><br/>8.2 Rectangular Waveguide 366<br/><br/>8.3 Rectangular Resonant Cavities 396<br/><br/>8.4 Hybrid (LSE and LSM) Modes 404<br/><br/>8.5 Partially Filled Waveguide 407<br/><br/>8.6 Transverse Resonance Method 419<br/><br/>8.7 Dielectric Waveguide 422<br/><br/>8.8 Stripline and Microstrip Lines 450<br/><br/>8.9 Ridged Waveguide 461<br/><br/>8.10 Multimedia 464<br/><br/>References 467<br/><br/>Problems 468<br/><br/>9 Circular Cross-Section Waveguides and Cavities 479<br/><br/>9.1 Introduction 479<br/><br/>9.2 Circular Waveguide 479<br/><br/>9.3 Circular Cavity 496<br/><br/>9.4 Radial Waveguides 505<br/><br/>9.5 Dielectric Waveguides and Resonators 512<br/><br/>9.6 Multimedia 537<br/><br/>References 537<br/><br/>Problems 539<br/><br/>10 Spherical Transmission Lines and Cavities 547<br/><br/>10.1 Introduction 547<br/><br/>10.2 Construction of Solutions 547<br/><br/>10.3 Biconical Transmission Line 555<br/><br/>10.4 The Spherical Cavity 559<br/><br/>10.5 Multimedia 567<br/><br/>References 567<br/><br/>Problems 567<br/><br/>11 Scattering 573<br/><br/>11.1 Introduction 573<br/><br/>11.2 Infinite Line-Source Cylindrical Wave Radiation 574<br/><br/>11.3 Plane Wave Scattering by Planar Surfaces 581<br/><br/>11.4 Cylindrical Wave Transformations and Theorems 597<br/><br/>11.5 Scattering by Circular Cylinders 605<br/><br/>11.6 Scattering By a Conducting Wedge 637<br/><br/>11.7 Spherical Wave Orthogonalities, Transformations, and Theorems 648<br/><br/>11.8 Scattering by a Sphere 653<br/><br/>11.9 Multimedia 663<br/><br/>References 664<br/><br/>Problems 666<br/><br/>12 Integral Equations and the Moment Method 677<br/><br/>12.1 Introduction 677<br/><br/>12.2 Integral Equation Method 678<br/><br/>12.3 Electric and Magnetic Field Integral Equations 701<br/><br/>12.4 Finite-Diameter Wires 721<br/><br/>12.5 Computer Codes 730<br/><br/>12.6 Multimedia 733<br/><br/>References 733<br/><br/>Problems 735<br/><br/>13 Geometrical Theory of Diffraction 739<br/><br/>13.1 Introduction 739<br/><br/>13.2 Geometrical Optics 740<br/><br/>13.3 Geometrical Theory of Diffraction: Edge Diffraction 759<br/><br/>13.4 Computer Codes 827<br/><br/>13.5 Multimedia 829<br/><br/>References 830<br/><br/>Problems 833<br/><br/>14 Diffraction by a Wedge with Impedance Surfaces 847<br/><br/>14.1 Introduction 847<br/><br/>14.2 Impedance Surface Boundary Conditions 849<br/><br/>14.3 Impedance Surface Reflection Coefficients 850<br/><br/>14.4 The Maliuzhinets Impedance Wedge Solution 852<br/><br/>14.5 Geometrical Optics 854<br/><br/>14.6 Surface Wave Terms 863<br/><br/>14.7 Diffracted Fields 865<br/><br/>14.8 Surface Wave Transition Field 873<br/><br/>14.9 Computations 875<br/><br/>14.10 Multimedia 877<br/><br/>References 878<br/><br/>Problems 881<br/><br/>15 Green’s Functions 883<br/><br/>15.1 Introduction 883<br/><br/>15.2 Green’s Functions in Engineering 884<br/><br/>15.3 Sturm-Liouville Problems 889<br/><br/>15.4 Two-Dimensional Green’s Function in Rectangular Coordinates 906<br/><br/>15.5 Green’s Identities and Methods 917<br/><br/>15.6 Green’s Functions of the Scalar Helmholtz Equation 923<br/><br/>15.7 Dyadic Green’s Functions 935<br/><br/>15.8 Multimedia 938<br/><br/>References 938<br/><br/>Problems 939<br/><br/>16 Artificial Impedance Surfaces 943<br/><br/>16.1 Introduction 943<br/><br/>16.2 Corrugations 945<br/><br/>16.3 Artificial Magnetic Conductors, Electromagnetic Bandgap, and Photonic Bandgap Surfaces 947<br/><br/>16.4 Design of Mushroom AMC 950<br/><br/>16.5 Surface-Wave Dispersion Characteristics 955<br/><br/>16.6 Limitations of The Design 959<br/><br/>16.7 Applications of AMCs 959<br/><br/>16.8 RCS Reduction Using Checkerboard Metasurfaces 960<br/><br/>16.9 Antenna Fundamental Parameters and Figures-of-Merit 980<br/><br/>16.10 Antenna Applications 982<br/><br/>16.11 High-Gain Printed Leaky-Wave Antennas Using Metasurfaces 997<br/><br/>16.12 Metasurface Leaky-Wave Antennas 999<br/><br/>16.13 Multimedia 1013<br/><br/>References 1014<br/><br/>Problems 1019<br/><br/>Appendix I Identities 1023<br/><br/>Appendix II Vector Analysis 1027<br/><br/>Appendix III Fresnel Integrals 1037<br/><br/>Appendix IV Bessel Functions 1043<br/><br/>Appendix V Legendre Polynomials and Functions 1057<br/><br/>Appendix VI the Method of Steepest Descent (saddle-point Method) 1073<br/><br/>Glossary 1079<br/><br/>Index 1085
520 ## - SUMMARY, ETC.
Summary, etc "Electromagnetic field theory is a discipline concerned with the study of charges, at rest and in motion, that produce currents and electric-magnetic fields. It is, therefore, fundamental to the study of electrical engineering and physics and indispensable to the understanding, design, and operation of many practical systems using antennas, scattering, microwave circuits and devices, radio-frequency and optical communications, wireless communications, broadcasting, geosciences and remote sensing, radar, radio astronomy, quantum electronics, solid-state circuits and devices, electromechanical energy conversion, and even computers. Circuit theory, a required area in the study of electrical engineering, is a special case of electromagnetic theory, and it is valid when the physical dimensions of the circuit are small compared to the wavelength. Circuit concepts, which deal primarily with lumped elements, must be modified to include distributed elements and coupling phenomena in studies of advanced systems. For example, signal propagation, distortion, and coupling in microstrip lines used in the design of sophisticated systems (such as computers and electronic packages of integrated circuits) can be properly accounted for only by understanding the electromagnetic field interactions associated with them. The study of electromagnetics includes both theoretical and applied concepts. The theoretical concepts are described by a set of basic laws formulated primarily through experiments conducted during the nineteenth century by many scientists-Faraday, Ampere, Gauss, Lenz, Coulomb, Volta, and others. Although Maxwell had come up with 20 equations with 20 variables, it was Heaviside and Hertz that both independently put them into a consistent and compact vectorial form. Both Heaviside and Hertz named them in honor of Maxwell, and today they are the widely acclaimed Maxwell's equations. The applied concepts of electromagnetics are formulated by applying the theoretical concepts to the design and operation of practical systems. In this chapter, we will review Maxwell's equations (both in differential and integral forms), describe the relations between electromagnetic field and circuit theories, derive the boundary conditions associated with electric and magnetic field behavior across interfaces, relate power and energy concepts for electromagnetic field and circuit theories, and specialize all these equations, relations, conditions, concepts, and theories to the study of time-harmonic fields."--
Assigning source Provided by publisher.
545 0# - BIOGRAPHICAL OR HISTORICAL DATA
Biographical or historical note CONSTANTINE A. BALANIS is Regents Professor Emeritus of Electrical Engineering at Arizona State University, USA. He received his BSEE from Virginia Tech in 1964, his MEE from the University of Virginia in 1966, his PhD in Electrical Engineering from The Ohio State University in 1969, and an honorary doctorate from the Aristotle University of Thessaloniki (AUTH). Professor Balanis is a Life Fellow of IEEE, author of Antenna Theory: Analysis and Design, and editor of Modern Antenna Handbook, both published by Wiley.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Electromagnetism.
655 #7 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Print version
Main entry heading Balanis, Constantine A., 1938-
Title Balanis' advanced engineering electromagnetics
Edition Third edition.
Place, publisher, and date of publication Hoboken, New Jersey : John Wiley & Sons, [2024]
International Standard Book Number 9781394180028
Record control number (DLC) 2023023650.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781394180042
Link text Full text is available at Wiley Online Library Click here to view
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Source of acquisition Full call number Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2025-05-16 ALBASA 537 B182 2024 2025-07-31 2025-07-31 EBOOK