Microgrids : (Record no. 91559)

000 -LEADER
fixed length control field 17000cam a2200493 i 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250731113357.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m o d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu---unuuu
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250731s2024 njum ob u001 0 eng
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119890850
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119890881
Qualifying information electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119890888
Qualifying information electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119890874
Qualifying information electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 111989087X
Qualifying information electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119890867
Qualifying information electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119890861
Qualifying information electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9781119890850
Qualifying information hardcover
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1002/9781119890881
Source of number or code doi
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1427062995
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
042 ## - AUTHENTICATION CODE
Authentication code pcc
050 04 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TK3105
Item number .M557 2024
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.31
Edition number 23/eng/20240315
245 00 - TITLE STATEMENT
Title Microgrids :
Remainder of title theory and practice /
Statement of responsibility, etc edited by Peng Zhang.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, New Jersey :
Name of publisher, distributor, etc John Wiley & Sons, Inc.,
Date of publication, distribution, etc [2024]
264 #4 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Date of publication, distribution, etc ©2024
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (xli, 896 pages) :
Other physical details illustrations (chiefly color)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent.
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia.
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier.
340 ## - PHYSICAL MEDIUM
Source rdacc
Authority record control number or standard number http://rdaregistry.info/termList/RDAColourContent/1003.
490 1# - SERIES STATEMENT
Series statement IEEE Press series on power and energy systems ;
Volume number/sequential designation 128.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note Table of Contents<br/>About the Editor xxix<br/><br/>List of Contributors xxxi<br/><br/>Preface xxxix<br/><br/>Acknowledgments xli<br/><br/>1 Introduction 1<br/>Peng Zhang<br/><br/>1.1 Background 1<br/><br/>1.2 Reader’s Manual 2<br/><br/>2 AI-Grid: AI-Enabled, Smart Programmable Microgrids 7<br/>Peng Zhang, Yifan Zhou, Scott A. Smolka, Scott D. Stoller, Xin Wang, Rong Zhao, Tianyun Ling, Yucheng Xing, Shouvik Roy, and Amol Damare<br/><br/>2.1 Introduction 7<br/><br/>2.2 AI-Grid Platform 8<br/><br/>2.3 AI-Enabled, Provably Resilient NM Operations 9<br/><br/>2.4 Resilient Modeling and Prediction of NM States Under Uncertainty 12<br/><br/>2.5 Runtime Safety and Security Assurance for AI-Grid 20<br/><br/>2.6 Software Platform for AI-Grid 41<br/><br/>2.7 AI-Grid for Grid Modernization 55<br/><br/>2.8 Exercises 55<br/><br/>References 55<br/><br/>3 Distributed Power Flow and Continuation Power Flow for Steady-State Analysis of Microgrids 59<br/>Fei Feng, Peng Zhang, and Yifan Zhou<br/><br/>3.1 Background 59<br/><br/>3.2 Individual Microgrid Power Flow 60<br/><br/>3.3 Networked Microgrids Power Flow 64<br/><br/>3.4 Numerical Tests of Microgrid Power Flow 71<br/><br/>3.5 Exercises 78<br/><br/>References 78<br/><br/>4 State and Parameter Estimation for Microgrids 81<br/>Yuzhang Lin, Yu Liu, Xiaonan Lu, and Heqing Huang<br/><br/>4.1 Introduction 81<br/><br/>4.2 State and Parameter Estimation for Inverter-Based Resources 82<br/><br/>4.3 State and Parameter Estimation for Network Components 94<br/><br/>4.4 Conclusion 102<br/><br/>4.5 Exercise 103<br/><br/>4.6 Acknowledgment 103<br/><br/>References 103<br/><br/>5 Eigenanalysis of Delayed Networked Microgrids 107<br/>Lizhi Wang, Yifan Zhou, and Peng Zhang<br/><br/>5.1 Introduction 107<br/><br/>5.2 Formulation of Delayed NMs 107<br/><br/>5.3 Delayed NMs Eigenanalysis 110<br/><br/>5.4 Case Study 111<br/><br/>5.5 Conclusion 115<br/><br/>5.6 Exercises 115<br/><br/>References 116<br/><br/>6 AI-Enabled Dynamic Model Discovery of Networked Microgrids 119<br/>Yifan Zhou and Peng Zhang<br/><br/>6.1 Preliminaries on ODE-Based Dynamical Modeling of NMs 119<br/><br/>6.2 Physics-Data-Integrated ODE Model of NMs 124<br/><br/>6.3 ODE-Net-Enabled Dynamic Model Discovery for Microgrids 126<br/><br/>6.4 Physics-Informed Learning for ODE-Net-Enabled Dynamic Models 130<br/><br/>6.5 Experiments 132<br/><br/>6.6 Summary 139<br/><br/>6.7 Exercises 139<br/><br/>References 139<br/><br/>7 Transient Stability Analysis for Microgrids with Grid-Forming Converters 141<br/>Xuheng Lin and Ziang Zhang<br/><br/>7.1 Background 141<br/><br/>7.2 System Modeling 142<br/><br/>7.3 Metric for Transient Stability 146<br/><br/>7.4 Microgrid Transient Stability Analysis 147<br/><br/>7.5 Conclusion and Future Directions 151<br/><br/>7.6 Exercises 152<br/><br/>References 152<br/><br/>8 Learning-Based Transient Stability Assessment of Networked Microgrids 155<br/>Tong Huang<br/><br/>8.1 Motivation 155<br/><br/>8.2 Networked Microgrid Dynamics 156<br/><br/>8.3 Learning a Lyapunov Function 158<br/><br/>8.4 Case Study 162<br/><br/>8.5 Summary 164<br/><br/>8.6 Exercises 164<br/><br/>References 164<br/><br/>9 Microgrid Protection 167<br/>Rômulo G. Bainy and Brian K. Johnson<br/><br/>9.1 Introduction 167<br/><br/>9.2 Protection Fundamentals 167<br/><br/>9.3 Typical Microgrid Protection Schemes 180<br/><br/>9.4 Challenges Posed by Microgrids 182<br/><br/>9.5 Examples of Solutions in Practice 187<br/><br/>9.6 Summary 192<br/><br/>9.7 Exercises 192<br/><br/>References 194<br/><br/>10 Microgrids Resilience: Definition, Measures, and Algorithms 197<br/>Zhaohong Bie and Yiheng Bian<br/><br/>10.1 Background of Resilience and the Role of Microgrids 197<br/><br/>10.2 Enhance Power System Resilience with Microgrids 199<br/><br/>10.3 Future Challenges 216<br/><br/>10.4 Exercises 216<br/><br/>References 217<br/><br/>11 In Situ Resilience Quantification for Microgrids 219<br/>Priyanka Mishra, Peng Zhang, Scott A. Smolka, Scott D. Stoller, Yifan Zhou, Yacov A. Shamash, Douglas L. Van Bossuyt, and William W. Anderson Jr.<br/><br/>11.1 Introduction 219<br/><br/>11.2 STL-Enabled In Situ Resilience Evaluation 220<br/><br/>11.3 Case Study 222<br/><br/>11.4 Conclusion 227<br/><br/>11.5 Exercises 227<br/><br/>11.6 Acknowledgment 227<br/><br/>References 227<br/><br/>12 Distributed Voltage Regulation of Multiple Coupled Distributed Generation Units in DC Microgrids: An Output Regulation Approach 229<br/>Tingyang Meng, Zongli Lin, Yan Wan, and Yacov A. Shamash<br/><br/>12.1 Introduction 229<br/><br/>12.2 Problem Statement 230<br/><br/>12.3 Review of Output Regulation Theory 232<br/><br/>12.4 Distributed Voltage Regulation in the Presence of Time-Varying Loads 239<br/><br/>12.5 Simulation Results 241<br/><br/>12.6 Conclusions 261<br/><br/>12.7 Exercises 261<br/><br/>12.8 Acknowledgment 262<br/><br/>References 262<br/><br/>13 Droop-Free Distributed Control for AC Microgrids 265<br/>Sheik M. Mohiuddin and Junjian Qi<br/><br/>13.1 Cyber-Physical Microgrid Modeling 265<br/><br/>13.2 Hierarchical Control of Islanded Microgrid 267<br/><br/>13.3 Droop-Free Distributed Control with Proportional Power Sharing 271<br/><br/>13.4 Droop-Free Distributed Control with Voltage Profile Guarantees 273<br/><br/>13.5 Steady-State Analysis for the Control in Section 13.4 277<br/><br/>13.6 Microgrid Test System and Control Performance 279<br/><br/>13.7 Steady-State Performance Under Different Loading Conditions and Controller Settings 282<br/><br/>13.8 Exercises 284<br/><br/>References 284<br/><br/>14 Optimal Distributed Control of AC Microgrids 287<br/>Sheik M. Mohiuddin and Junjian Qi<br/><br/>14.1 Optimization Problem for Secondary Control 287<br/><br/>14.2 Primal–Dual Gradient Based Distributed Solving Algorithm 291<br/><br/>14.3 Microgrid Test Systems 297<br/><br/>14.4 Control Performance on 4-DG System 298<br/><br/>14.5 Control Performance on IEEE 34-Bus System 300<br/><br/>14.6 Exercises 304<br/><br/>References 304<br/><br/>15 Cyber-Resilient Distributed Microgrid Control 307<br/>Pouya Babahajiani and Peng Zhang<br/><br/>15.1 Push-Sum Enabled Resilient Microgrid Control 307<br/><br/>15.2 Employing Interacting Qubits for Distributed Microgrid Control 313<br/><br/>References 330<br/><br/>16 Programmable Crypto-Control for Networked Microgrids 335<br/>Lizhi Wang, Peng Zhang, and Zefan Tang<br/><br/>16.1 Introduction 335<br/><br/>16.2 PCNMs and Privacy Requirements 336<br/><br/>16.3 Dynamic Encrypted Weighted Addition 340<br/><br/>16.4 DEWA Privacy Analysis 343<br/><br/>16.5 Case Studies 345<br/><br/>16.6 Conclusion 354<br/><br/>16.7 Exercises 355<br/><br/>References 355<br/><br/>17 AI-Enabled, Cooperative Control, and Optimization in Microgrids 359<br/>Ning Zhang, Lingxiao Yang, and Qiuye Sun<br/><br/>17.1 Introduction 359<br/><br/>17.2 Energy Hub Model in Microgirds 360<br/><br/>17.3 Distributed Adaptive Cooperative Control in Microgrids 361<br/><br/>17.4 Optimal Energy Operation in Microgrids Based on Hybrid Reinforcement Learning 369<br/><br/>17.5 Conclusion 384<br/><br/>17.6 Exercises 384<br/><br/>References 385<br/><br/>18 DNN-Based EV Scheduling Learning for Transactive Control Framework 387<br/>Aysegul Kahraman and Guangya Yang<br/><br/>18.1 Introduction 387<br/><br/>18.2 Transactive Control Formulation 388<br/><br/>18.3 Proposed Deep Neural Networks in Transactive Control 391<br/><br/>18.4 Case Study 392<br/><br/>18.5 Simulation Results and Discussion 394<br/><br/>18.6 Conclusion 396<br/><br/>18.7 Exercises 398<br/><br/>References 398<br/><br/>19 Resilient Sensing and Communication Architecture for Microgrid Management 401<br/>Yuzhang Lin, Vinod M. Vokkarane, Md. Zahidul Islam, and Shamsun Nahar Edib<br/><br/>19.1 Introduction 401<br/><br/>19.2 Resilient Sensing and Communication Network Planning Against Multidomain Failures 404<br/><br/>19.3 Observability-Aware Network Routing for Fast and Resilient Microgrid Monitoring 412<br/><br/>19.4 Conclusion 420<br/><br/>19.5 Exercises 420<br/><br/>References 422<br/><br/>20 Resilient Networked Microgrids Against Unbounded Attacks 425<br/>Shan Zuo, Tuncay Altun, Frank L. Lewis, and Ali Davoudi<br/><br/>20.1 Introduction 425<br/><br/>20.2 Adaptive Resilient Control of AC Microgrids Under Unbounded Actuator Attacks 427<br/><br/>20.3 Distributed Resilient Secondary Control of DC Microgrids Against Unbounded Attacks 437<br/><br/>20.4 Conclusion 449<br/><br/>20.5 Acknowledgment 451<br/><br/>20.6 Exercises 451<br/><br/>References 453<br/><br/>21 Quantum Security for Microgrids 457<br/>Zefan Tang and Peng Zhang<br/><br/>21.1 Background 457<br/><br/>21.2 Quantum Communication for Microgrids 459<br/><br/>21.3 The QKD Simulator 463<br/><br/>21.4 Quantum-Secure Microgrid 467<br/><br/>21.5 Quantum-Secure NMs 471<br/><br/>21.6 Experimental Results 474<br/><br/>21.7 Future Perspectives 481<br/><br/>21.8 Summary 483<br/><br/>21.9 Exercises 483<br/><br/>References 484<br/><br/>22 Community Microgrid Dynamic and Power Quality Design Issues 487<br/>Phil Barker, Tom Ortmeyer, and Clayton Burns<br/><br/>22.1 Introduction 487<br/><br/>22.2 Potsdam Resilient Microgrid Overview 488<br/><br/>22.3 Power Quality Parameters and Guidelines 490<br/><br/>22.4 Microgrid Analytical Methods 498<br/><br/>22.5 Analysis of Grid Parallel Microgrid Operation 499<br/><br/>22.6 Fault Current Contributions and Grounding 515<br/><br/>22.7 Microgrid Operation in Islanded Mode 529<br/><br/>22.8 Conclusions and Recommendations 551<br/><br/>22.9 Exercises 552<br/><br/>22.10 Acknowledgment 553<br/><br/>References 553<br/><br/>23 A Time of Energy Transition at Princeton University 555<br/>Edward T. Borer, Jr.<br/><br/>23.1 Introduction 555<br/><br/>23.2 Cogeneration 556<br/><br/>23.3 The Magic of The Refrigeration Cycle 560<br/><br/>23.4 Capturing Heat, Not Wasting It 562<br/><br/>23.5 Multiple Forms of Energy Storage 565<br/><br/>23.6 Daily Thermal Storage – Chilled or Hot Water 569<br/><br/>23.7 Seasonal Thermal Storage – Geoexchange 571<br/><br/>23.8 Moving to Renewable Electricity as the Main Energy Input 574<br/><br/>23.9 Water Use Reduction 575<br/><br/>23.10 Closing Comments 577<br/><br/>24 Considerations for Digital Real-Time Simulation, Control-HIL, and Power-HIL in Microgrids/DER Studies 579<br/>Juan F. Patarroyo, Joel Pfannschmidt, K. S. Amitkumar, Jean-Nicolas Paquin, and Wei li<br/><br/>24.1 Introduction 579<br/><br/>24.2 Considerations and Applications for Real-Time Simulation 580<br/><br/>24.3 Considerations and Applications of Control Hardware-in-the-Loop 593<br/><br/>24.4 Considerations and Applications of Power Hardware-in-the-Loop 602<br/><br/>24.5 Concluding Remarks 612<br/><br/>24.6 Exercises 612<br/><br/>References 613<br/><br/>25 Real-Time Simulations of Microgrids: Industrial Case Studies 615<br/>Hui Ding, Xianghua Shi, Yi Qi, Christian Jegues, and Yi Zhang<br/><br/>25.1 Universal Converter Model Representation 615<br/><br/>25.2 Practical Microgrid Case 1: Aircraft Microgrid System 617<br/><br/>25.3 Practical Microgrid Case 2: Banshee Power System 620<br/><br/>25.4 Summary 630<br/><br/>25.5 Exercises 630<br/><br/>References 630<br/><br/>26 Coordinated Control of DC Microgrids 633<br/>Weidong Xiao and Jacky Xiangyu Han<br/><br/>26.1 dc Droop 634<br/><br/>26.2 Hierarchical Control Scheme 639<br/><br/>26.3 Average Voltage Sharing 639<br/><br/>26.4 Bus Line Communication 645<br/><br/>26.5 Summary 651<br/><br/>26.6 Exercises 654<br/><br/>References 654<br/><br/>27 Foundations of Microgrid Resilience 655<br/>William W. Anderson, Jr. and Douglas L. Van Bossuyt<br/><br/>27.1 Introduction 655<br/><br/>27.2 Background/Problem Statement 656<br/><br/>27.3 Defining Resilience 657<br/><br/>27.4 Resilience Analysis Examples 662<br/><br/>27.5 Discussion and Future Work 671<br/><br/>27.6 Conclusion 672<br/><br/>27.7 Acknowledgments 672<br/><br/>27.8 Exercises 673<br/><br/>References 677<br/><br/>28 Reliability Evaluation and Voltage Control Strategy of AC–DC Microgrid 681<br/>Qianyu Zhao, Shouxiang Wang, Qi Liu, Zhixin Li, Xuan Wang, and Xuan Zhang<br/><br/>28.1 Introduction 681<br/><br/>28.2 Typical Topology Evaluation of AC–DC Microgrid 682<br/><br/>28.3 Coordinated Optimization for the AC–DC Microgrid 690<br/><br/>28.4 Case Study 696<br/><br/>28.5 Actual Project Construction 707<br/><br/>28.6 Conclusion 708<br/><br/>28.7 Exercises 710<br/><br/>References 710<br/><br/>29 Self-Organizing System of Sensors for Monitoring and Diagnostics of a Modern Microgrid 713<br/>Michael Gouzman, Serge Luryi, Claran Martis, Yacov A. Shamash, and Alex Shevchenko<br/><br/>29.1 Introduction 713<br/><br/>29.2 Structures for Building Modern Microgrids 713<br/><br/>29.3 Requirements for the Monitoring and Diagnostics System of Modern Microgrids 715<br/><br/>29.4 Communication Systems in Microgrids 716<br/><br/>29.5 Sensors 717<br/><br/>29.6 Network Topology Identification Algorithm 721<br/><br/>29.7 Implementation 725<br/><br/>29.8 Exercise 725<br/><br/>References 727<br/><br/>30 Event Detection, Classification, and Location Identification with Synchro-Waveforms 729<br/>Milad Izadi and Hamed Mohsenian-Rad<br/><br/>30.1 Introduction 729<br/><br/>30.2 Event Detection 732<br/><br/>30.3 Event Classification 737<br/><br/>30.4 Event Location Identification 743<br/><br/>30.5 Applications 756<br/><br/>30.6 Exercises 757<br/><br/>References 758<br/><br/>31 Traveling Wave Analysis in Microgrids 761<br/>Soumitri Jena and Peng Zhang<br/><br/>31.1 Introduction 761<br/><br/>31.2 Background Theories 761<br/><br/>31.3 Challenges for TW Applications in Microgrid 763<br/><br/>31.4 Proposed Traveling Wave Protection Scheme 765<br/><br/>31.5 Performance Analysis 774<br/><br/>31.6 Conclusion 781<br/><br/>31.7 Exercises 781<br/><br/>References 783<br/><br/>32 Neuro-Dynamic State Estimation of Microgrids 785<br/>Fei Feng, Yifan Zhou, and Peng Zhang<br/><br/>32.1 Background 785<br/><br/>32.2 Preliminaries of Physics-Based DSE 786<br/><br/>32.3 Neuro-DSE Algorithm 786<br/><br/>32.4 Self-Refined Neuro-DSE 790<br/><br/>32.5 Numerical Tests of Neuro-DSE 792<br/><br/>32.6 Exercises 798<br/><br/>References 799<br/><br/>33 Hydrogen-Supported Microgrid toward Low-Carbon Energy Transition 801<br/>Jianxiao Wang, Guannan He, and Jie Song<br/><br/>33.1 Introduction 801<br/><br/>33.2 Hydrogen Production in Microgrid Operation 802<br/><br/>33.3 Hydrogen Utilization in Microgrid Operation 805<br/><br/>33.4 Case Studies 810<br/><br/>33.5 Exercises 812<br/><br/>33.6 Acknowledgement 813<br/><br/>References 813<br/><br/>34 Sharing Economy in Microgrid 815<br/>Jianxiao Wang, Feng Gao, Tiance Zhang, and Qing Xia<br/><br/>34.1 Introduction 815<br/><br/>34.2 Aggregation of Distributed Energy Resources in Energy Markets 816<br/><br/>34.3 Aggregation of Distributed Energy Resources in Energy and Capacity Markets 819<br/><br/>34.4 Case Studies 824<br/><br/>34.5 Exercises 829<br/><br/>34.6 Acknowledgement 830<br/><br/>References 830<br/><br/>35 Microgrid: A Pathway to Mitigate Greenhouse Impact of Rural Electrification 831<br/>Jianxiao Wang, Haiwang Zhong, and Jing Dai<br/><br/>35.1 Introduction 831<br/><br/>35.2 System Model 832<br/><br/>35.3 Case Studies 838<br/><br/>35.4 Discussion 845<br/><br/>35.5 Exercises 846<br/><br/>35.6 Acknowledgement 847<br/><br/>References 847<br/><br/>36 Operations of Microgrids with Meshed Topology Under Uncertainty 849<br/>Mikhail A. Bragin, Bing Yan, Akash Kumar, Nanpeng Yu, and Peng Zhang<br/><br/>36.1 Self-sufficiency and Sustainability of Microgrids Under Uncertainty 849<br/><br/>36.2 Microgrid Model: Proactive Operation Optimization Under Uncertainties 853<br/><br/>36.3 Solution Methodology 854<br/><br/>36.4 Conclusions 858<br/><br/>36.5 Exercises 859<br/><br/>References 860<br/><br/>37 Operation Optimization of Microgrids with Renewables 863<br/>Bing Yan, Akash Kumar, and Peng Zhang<br/><br/>37.1 Introduction 863<br/><br/>37.2 Existing Work 864<br/><br/>37.3 Mathematical Modeling 865<br/><br/>37.4 Solution Methodology 870<br/><br/>37.5 Exercises 871<br/><br/>References 872<br/><br/>Index 875
520 ## - SUMMARY, ETC.
Summary, etc "A microgrid is a decentralized group of electricity sources and loads that normally operates, connected to and synchronous with the traditional wide area synchronous grid (macrogrid), but is able to disconnect from the interconnected grid and to function autonomously in "island mode" as technical or economic conditions dictate. Another use case is the off-grid application, it is called an autonomous, stand-alone or isolated microgrid. These microgrids are best served by local energy sources where power transmission and distribution from a major centralized energy source is too far and costly to execute. They offer an option for rural electrification in remote areas and on smaller geographical islands. As a controllable entity, a microgrid can effectively integrate various sources of distributed generation (DG), especially renewable energy sources (RES)."--
Assigning source Provided by publisher.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Microgrids (Smart power grids)
Authority record control number https://id.loc.gov/authorities/subjects/sh2016000604.
655 #7 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Zhang, Peng,
Titles and other words associated with a name Dr.,
Authority record control number https://id.loc.gov/authorities/names/nb2021007712
Relator term editor.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Print version:
Title Microgrids
Place, publisher, and date of publication Hoboken, New Jersey : Wiley, [2024]
International Standard Book Number 9781119890850
Record control number (DLC) 2024007111.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title IEEE Press series on power and energy systems ;
Authority record control number https://id.loc.gov/authorities/names/no2023117201
Volume number/sequential designation 128.
856 ## - ELECTRONIC LOCATION AND ACCESS
Link text Full text is available at Wiley Online Library Click here to view
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781119890881
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Source of acquisition Full call number Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2025-07-31 Megatexts Phil. Inc. 621.31 M5836 2024 2025-07-31 2025-07-31 EBOOK