000 -LEADER |
fixed length control field |
14503cam a2200517Ii 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20250324173834.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION |
fixed length control field |
m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
cr cnu|||unuuu |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
250324b ||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781118933947 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781118933916 |
Qualifying information |
electronic bk |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
1118933915 |
Qualifying information |
electronic bk |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781118933930 |
Qualifying information |
electronic bk |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
1118933931 |
Qualifying information |
electronic bk |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
Cancelled/invalid ISBN |
9781118933947 |
035 ## - SYSTEM CONTROL NUMBER |
System control number |
(OCoLC)930083019 |
041 ## - LANGUAGE CODE |
Language code of text/sound track or separate title |
eng. |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
TA170 |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
TEC |
Subject category code subdivision |
010000 |
Source |
bisacsh |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
628 |
Edition number |
23 |
245 00 - TITLE STATEMENT |
Title |
Sustainability assessment of renewables-based products : |
Remainder of title |
methods and case studies / |
Statement of responsibility, etc |
edited by Jo Dewulf, Steven De Meester, Rodrigo A. F. Alvarenga. |
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Place of publication, distribution, etc |
Chichester, United Kingdom : |
Name of publisher, distributor, etc |
Wiley, |
Date of publication, distribution, etc |
[2015] |
264 #4 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Date of publication, distribution, etc |
©2016. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
1 online resource. |
336 ## - CONTENT TYPE |
Content type term |
text |
Content type code |
txt |
Source |
rdacontent. |
337 ## - MEDIA TYPE |
Media type term |
computer |
Media type code |
c |
Source |
rdamedia. |
338 ## - CARRIER TYPE |
Carrier type term |
online resource |
Carrier type code |
cr |
Source |
rdacarrier. |
340 ## - PHYSICAL MEDIUM |
Source |
rdacc |
Authority record control number or standard number |
http://rdaregistry.info/termList/RDAColourContent/1003. |
490 1# - SERIES STATEMENT |
Series statement |
Wiley series in renewable resources. |
504 ## - BIBLIOGRAPHY, ETC. NOTE |
Bibliography, etc |
Includes bibliographical references and index. |
505 0# - CONTENTS |
Formatted contents note |
Table of Contents<br/>List of Contributors xvii<br/><br/>Series Editor’s Preface xxiii<br/><br/>Preface xxvii<br/><br/>1 The Growing Role of Biomass for Future Resource Supply—Prospects and Pitfalls 1<br/>Helmut Haberl<br/><br/>1.1 Introduction 1<br/><br/>1.2 Global Ecological and Socioeconomic Biomass Flows 3<br/><br/>1.3 Global Biomass Potentials in 2050 5<br/><br/>1.4 Critical Socio-Ecological Feedbacks and Sustainability Issues 9<br/><br/>1.5 Conclusions 12<br/><br/>Acknowledgements 12<br/><br/>References 13<br/><br/>2 The Growing Role of Photovoltaic Solar, Wind and Geothermal Energy as Renewables for Electricity Generation 19<br/>W.G.J.H.M. van Sark, J.G. Schepers, and J.D.A.M. van Wees<br/><br/>2.1 General Introduction 19<br/><br/>2.2 Photovoltaic Solar Energy 21<br/><br/>2.3 Wind Energy 24<br/><br/>2.4 Geothermal Energy 28<br/><br/>2.5 Conclusion 33<br/><br/>References 34<br/><br/>3 Assessment of Sustainability within Holistic Process Design 37<br/>Alexei Lapkin, Philipp]Maximilian Jacob, Polina Yaseneva, Charles Gordon, and Amy Peace<br/><br/>3.1 Introduction: Holistic Process Design from Unit Operations to Systems Science Methods 37<br/><br/>3.2 Use of Life Cycle Assessment in Holistic Process Design 40<br/><br/>3.3 A Decision-Tree Methodology for Complex Process Design 41<br/><br/>3.4 Generation of New Synthesis Routes in Bio-Based Supply Chains 45<br/><br/>3.5 Conclusions 47<br/><br/>Acknowledgements 48<br/><br/>References 48<br/><br/>4 A Mass Balance Approach to Link Sustainable Renewable Resources in Chemical Synthesis with Market Demand 51<br/>Claudius Kormann and Andreas Kicherer<br/><br/>4.1 Introduction 51<br/><br/>4.2 Renewable Feedstock: Market Drivers, Political Frame 52<br/><br/>4.3 Traceability of Biomass as Feedstock in the Chemical Industry 53<br/><br/>4.4 Standard of Mass Balance in Chemical Synthesis 57<br/><br/>4.5 Sustainability Aspects of Renewable Resources 60<br/><br/>4.6 Discussion 61<br/><br/>4.7 Vision and Summary 62<br/><br/>References 63<br/><br/>5 Early R&D Stage Sustainability Assessment: The 5 Pillar Method 65<br/>Akshay D. Patel, John A. Posada, Li Shen, and Martin K. Patel<br/><br/>5.1 Introduction 65<br/><br/>5.2 Methodology 67<br/><br/>5.3 Case Study 73<br/><br/>5.4 Validation Case Study 75<br/><br/>5.5 Critical Review and Outlook 76<br/><br/>5.6 Conclusion 79<br/><br/>References 79<br/><br/>6 Assessing the Sustainability of Land Use: A Systems Approach 81<br/>Miguel Brandão<br/><br/>6.1 Introduction 81<br/><br/>6.2 Methodological Issue 1: Consequential Analysis of Land Use Decisions 82<br/><br/>6.3 Methodological Issue 2: Land Use Impacts on Ecosystems 87<br/><br/>6.4 Methodological Issue 3: Land Use Impacts on Climate 89<br/><br/>6.5 Methodological Issue 4: Economic and Social Impact Assessment 90<br/><br/>6.6 Methodological Issue 5: Integrating Environmental and Economic Assessments 92<br/><br/>6.7 Discussion 93<br/><br/>6.8 Conclusions 94<br/><br/>References 94<br/><br/>7 Water Use Analysis 97<br/>Francesca Verones, Stephan Pfister, and Markus Berger<br/><br/>7.1 Introduction 97<br/><br/>7.2 Methods and Tools for Assessing the Sustainable Use of Water 98<br/><br/>7.3 Case Study: Water Consumption Analysis of Biofuels and Fossil Fuels 102<br/><br/>7.4 Discussion and Conclusion 105<br/><br/>References 106<br/><br/>8 Material Intensity of Food Production and Consumption 109<br/>Lucia Mancini and Michael Lettenmeier<br/><br/>8.1 Introduction 109<br/><br/>8.2 Material Flow Based Approaches for Assessing Sustainable Production and Consumption Systems 110<br/><br/>8.3 MIPS Concept and Methodology 111<br/><br/>8.4 Material Intensity of Food Systems 113<br/><br/>8.5 Results of MIPS for Agricultural Products and Foodstuffs 118<br/><br/>8.6 Conclusions 121<br/><br/>References 122<br/><br/>9 Material and Energy Flow Analysis 125<br/>Goto Naohiro, Nova Ulhasanah, Hirotsugu Kamahara, Udin Hasanudin, Ryuichi Tachibana, and Koichi Fujie<br/><br/>9.1 Background 125<br/><br/>9.2 Methodology 128<br/><br/>9.3 Case Study 131<br/><br/>9.4 Conclusion 139<br/><br/>Acknowledgements 139<br/><br/>References 139<br/><br/>10 Exergy and Cumulative Exergy Use Analysis 141<br/>Sofie Huysman, Thomas Schaubroeck, and Jo Dewulf<br/><br/>10.1 What Is Exergy 141<br/><br/>10.2 Calculation of Exergy 142<br/><br/>10.3 Applications of Exergy 144<br/><br/>10.4 Cumulative Exergy Use Analysis 146<br/><br/>10.5 Conclusions 151<br/><br/>References 152<br/><br/>11 Carbon and Environmental Footprint Methods for Renewables based Products and Transition Pathways to 2050 155<br/>Geoffrey P. Hammond<br/><br/>11.1 Introduction 155<br/><br/>11.2 Carbon and Environmental (or Eco) Footprinting 159<br/><br/>11.3 The Relationship between Environmental Footprint Analysis (EFA) and Environmental Life]Cycle Assessment (LCA) 166<br/><br/>11.4 Carbon and Environmental Footprints Associated with Global Biofuel Production 167<br/><br/>11.5 Carbon and Environmental Footprints of Low Carbon Transition Pathways 171<br/><br/>11.6 Concluding Remarks 174<br/><br/>Acknowledgements 175<br/><br/>References 176<br/><br/>12 Tracking Supply and Demand of Biocapacity through Ecological Footprint Accounting 179<br/>David Lin, Alessandro Galli, Michael Borucke, Elias Lazarus, Nicole Grunewald, Jon Martindill, David Zimmerman, Serena Mancini, Katsunori Iha, and Mathis Wackernagel<br/><br/>12.1 Summary and Rationale 179<br/><br/>12.2 Methodology 182<br/><br/>12.3 Usage Recommendations 193<br/><br/>12.4 Future Developments 195<br/><br/>References 195<br/><br/>13 Life Cycle Assessment and Sustainability Supporting Decision Making by Business and Policy 201<br/>Sala Serenella, Fabrice Mathieux, and Rana Pant<br/><br/>13.1 Life Cycle Assessment: A Systemic Approach to Evaluate Impacts 201<br/><br/>13.2 LCA: Supporting Sustainability Assessment 205<br/><br/>13.3 Role of LCA in Supporting Decisions in Business and Policy Context 206<br/><br/>13.4 Tools and Support to Put LCA into Practice 210<br/><br/>13.5 Conclusion and the Way Forward 211<br/><br/>Acknowledgements 211<br/><br/>References 212<br/><br/>14 Life Cycle Costing 215<br/>Andreas Ciroth, Jutta Hildenbrand, and Bengt Steen<br/><br/>14.1 Life Cycle Costing – Definition and Principles 215<br/><br/>14.2 Environmental LCC 216<br/><br/>14.3 Societal LCC 220<br/><br/>14.4 LCC and Renewables 221<br/><br/>14.5 Example Case 222<br/><br/>References 228<br/><br/>15 Social Life Cycle Assessment: Methodologies and Practice 229<br/>Alessandra Zamagni, Pauline Feschet, Anna Irene De Luca, Nathalie Iofrida, and Patrizia Buttol<br/><br/>15.1 Introduction 229<br/><br/>15.2 Social Life Cycle Assessment: Scientific Background 230<br/><br/>15.3 Social Life Cycle Assessment in Practice 232<br/><br/>15.4 SLCA and Life Cycle Sustainability Assessment: Methodological Challenges 234<br/><br/>15.5 Conclusions and Outlook 236<br/><br/>References 237<br/><br/>16 Life Cycle Assessment of Solar Technologies 241<br/>F. Ardente, M. Cellura, S. Longo, and M. Mistretta<br/><br/>16.1 Introduction 241<br/><br/>16.2 Solar Technologies 242<br/><br/>16.3 Life Cycle Assessment (LCA) and Solar Technologies 245<br/><br/>16.3.1 Solar Thermal Plants 246<br/><br/>16.3.2 Photovoltaic Plants 246<br/><br/>16.3.3 Concentrating Solar Power (CSP) Plants and Solar Heating/Cooling Plants 249<br/><br/>16.4 Assessment of Solar Technologies 249<br/><br/>16.5 Conclusions 256<br/><br/>References 256<br/><br/>17 Assessing the Sustainability of Geothermal Utilization 259<br/>Ruth Shortall, Gudni Axelsson, and Brynhildur Davidsdottir<br/><br/>17.1 Introduction 259<br/><br/>17.2 Sustainable Geothermal Utilization 260<br/><br/>17.3 Broader Sustainability Assessment of Energy Developments 266<br/><br/>17.4 Sustainability Assessment Framework for Geothermal Power 266<br/><br/>17.5 Conclusion 271<br/><br/>References 271<br/><br/>18 Biofuels from Terrestrial Biomass: Sustainability Assessment of Sugarcane Biorefineries in Brazil 275<br/>Otavio Cavalett, Marcos D.B. Watanabe, Alexandre Souza, Mateus F. Chagas, Tassia L. Junqueira, and Antonio Bonomi<br/><br/>18.1 Introduction 275<br/><br/>18.2 The Virtual Sugarcane Biorefinery (VSB) 276<br/><br/>18.3 Methods Used in the VSB 277<br/><br/>18.4 Biorefinery Scenarios Case Study 279<br/><br/>18.5 Final Remarks 286<br/><br/>Acknowledgements 286<br/><br/>References 287<br/><br/>19 Algae as Promising Biofeedstock; Searching for Sustainable Production Processes and Market Applications 289<br/>Sue Ellen Taelman, Steven De Meester, and Jo Dewulf<br/><br/>19.1 Introduction 289<br/><br/>19.2 Algae Background 290<br/><br/>19.3 Algal Cultivation and Processing Methods 292<br/><br/>19.4 Algae: Production and Potential Applications 294<br/><br/>19.5 Environmental Sustainability of Algae Production 298<br/><br/>19.6 Conclusions 302<br/><br/>References 303<br/><br/>20 Life Cycle Assessment of Biobased and Fossil Based Succinic Acid 307<br/>Marieke Smidt, Jeroen den Hollander, Henk Bosch, Yang Xiang, Maarten van der Graaf, Anne Lambin, and Jean]Pierre Duda<br/><br/>20.1 Production of Succinic Acid 307<br/><br/>20.2 Life Cycle Assessment: Biobased Succinic Acid and Fossil]Based Equivalent 310<br/><br/>20.3 Sensitivity Analysis 316<br/><br/>20.4 Conclusions 319<br/><br/>References 320<br/><br/>21 Biobased Poly Vinylchloride (PVC) 323<br/>Rodrigo A.F. Alvarenga, Zdenek Hruska, Alain Wathelet, and Jo Dewulf<br/><br/>21.1 Introduction 323<br/><br/>21.2 Life Cycle Assessment of Biobased PVC 324<br/><br/>21.3 Carbon Footprint of Biobased Product 329<br/><br/>21.4 Environmental Sustainability of Bioethanol Use 330<br/><br/>21.5 Conclusions 331<br/><br/>References 332<br/><br/>22 Evaluation of Wood Cascading 335<br/>Karin Höglmeier, Gabriele Weber-Blaschke, and Klaus Richter<br/><br/>22.1 Introduction 335<br/><br/>22.2 Environmental Assessment of Wood Cascading by LCA 338<br/><br/>22.3 Discussion and Conclusion 343<br/><br/>Acknowledgements 345<br/><br/>References 345<br/><br/>23 Time]Dependent Life Cycle Assessment of Bio-Based Packaging Materials 347<br/>Maartje N. Sevenster<br/><br/>23.1 Introduction 347<br/><br/>23.2 Methodology 351<br/><br/>23.3 Results 353<br/><br/>23.4 Discussion 357<br/><br/>23.5 Conclusions 358<br/><br/>References 358<br/><br/>24 Conclusions 361<br/>Jo Dewulf<br/><br/>24.1 The Importance of Renewables]Based Products and Services 361<br/><br/>24.2 The Need for Sustainability Assessment for Renewables: Even More Than in the Past 362<br/><br/>24.3 The Growing Sustainability Assessment Toolbox 363<br/><br/>24.4 Outlook: Pending Challenges 364<br/><br/>Index |
520 ## - SUMMARY, ETC. |
Summary, etc |
Over the past decade, renewables-based technology and sustainability assessment methods have grown tremendously. Renewable energy and products have a significant role in the market today, and the same time sustainability assessment methods have advanced, with a growing standardization of environmental sustainability metrics and consideration of social issues as part of the assessment.<br/><br/>Sustainability Assessment of Renewables-Based Products: Methods and Case Studies is an extensive update and sequel to the 2006 title Renewables-Based Technology: Sustainability Assessment. It discusses the impressive evolution and role renewables have taken in our modern society, highlighting the importance of sustainability principles in the design phase of renewable-based technologies, and presenting a wide range of sustainability assessment methods suitable for renewables-based technologies, together with case studies to demonstrate their applications.<br/><br/>This book is a valuable resource for academics, businesses and policy makers who are active in contributing to more sustainable production and consumption.<br/><br/>For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs<br/><br/>Topics covered include:<br/><br/>The growing role of renewables in our society<br/>Sustainability in the design phase of products and processes<br/>Principles of sustainability assessment<br/>Land use analysis<br/>Water use analysis<br/>Material and energy flow analysis<br/>Exergy and cumulative exergy analysisCarbon and environmental footprint methods<br/>Life Cycle Assessment (LCA), social Life Cycle Assessment and Life Cycle Costing (LCC)<br/>Case studies: renewable energy, bio-based chemicals and bio-based materials. |
545 0# - BIOGRAPHICAL OR HISTORICAL DATA |
Biographical or historical note |
About the Author<br/>Prof. Dr. Jo Dewulf, Institute for Environment and Sustainability, JRC, European Commision, Italy and Sustainable Organic Chemistry and Technology, Ghent University, Belgium<br/>Professor Dewulf performs research in the areas of environmental chemistry, environmental technology and clean technology at Ghent University. Since December 2013, he has been working as a senior researcher in the Institute for Environment and Sustainability at the Joint Research Institute of the European Commission. Key in his work is managing natural resources in a technically efficient way, performing thermodynamics based sustainability analysis at process, plant and cradle-to-gate level to support the development and assessment of new technologies.<br/><br/>Supported by:<br/><br/>Dr Steven De Meester, Sustainable Organic Chemistry and Technology, Ghent University, Belgium<br/>Dr De Meester works on the development of sustainability assessment methodologies for new technologies and applications of Life Cycle Assessment in industry.<br/><br/>Dr Rodrigo Alvarenga, Universidade Federal de Santa Catarina, Brazil |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Sustainable engineering. |
Authority record control number |
http://id.loc.gov/authorities/subjects/sh2006001869. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Sustainable design. |
Authority record control number |
http://id.loc.gov/authorities/subjects/sh2007001468. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Renewable natural resources. |
Authority record control number |
http://id.loc.gov/authorities/subjects/sh85112839. |
655 #4 - INDEX TERM--GENRE/FORM |
Genre/form data or focus term |
Electronic books. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Dewulf, Jo, |
Authority record control number |
http://id.loc.gov/authorities/names/n2005084007 |
Relator term |
editor. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Meester, Steven De, |
Dates associated with a name |
1985- |
Authority record control number |
http://id.loc.gov/authorities/names/no2015165142 |
Relator term |
editor. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Alvarenga, Rodrigo, |
Authority record control number |
http://id.loc.gov/authorities/names/no2015121234 |
Relator term |
editor. |
710 2# - ADDED ENTRY--CORPORATE NAME |
Corporate name or jurisdiction name as entry element |
Ohio Library and Information Network. |
Authority record control number |
http://id.loc.gov/authorities/names/no95058981. |
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE |
Uniform title |
Wiley series in renewable resources. |
Authority record control number |
http://id.loc.gov/authorities/names/n2005054964. |
856 40 - ELECTRONIC LOCATION AND ACCESS |
Uniform Resource Identifier |
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118933916 |
Link text |
Full text available at Wiley Online Library Click here to view. |
942 ## - ADDED ENTRY ELEMENTS |
Source of classification or shelving scheme |
|
Item type |
EBOOK |