Sustainability assessment of renewables-based products : (Record no. 89924)

000 -LEADER
fixed length control field 14503cam a2200517Ii 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250324173834.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m o d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu|||unuuu
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250324b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781118933947
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781118933916
Qualifying information electronic bk
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1118933915
Qualifying information electronic bk
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781118933930
Qualifying information electronic bk
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1118933931
Qualifying information electronic bk
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9781118933947
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)930083019
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng.
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TA170
072 #7 - SUBJECT CATEGORY CODE
Subject category code TEC
Subject category code subdivision 010000
Source bisacsh
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 628
Edition number 23
245 00 - TITLE STATEMENT
Title Sustainability assessment of renewables-based products :
Remainder of title methods and case studies /
Statement of responsibility, etc edited by Jo Dewulf, Steven De Meester, Rodrigo A. F. Alvarenga.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Chichester, United Kingdom :
Name of publisher, distributor, etc Wiley,
Date of publication, distribution, etc [2015]
264 #4 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Date of publication, distribution, etc ©2016.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource.
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent.
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia.
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier.
340 ## - PHYSICAL MEDIUM
Source rdacc
Authority record control number or standard number http://rdaregistry.info/termList/RDAColourContent/1003.
490 1# - SERIES STATEMENT
Series statement Wiley series in renewable resources.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note Table of Contents<br/>List of Contributors xvii<br/><br/>Series Editor’s Preface xxiii<br/><br/>Preface xxvii<br/><br/>1 The Growing Role of Biomass for Future Resource Supply—Prospects and Pitfalls 1<br/>Helmut Haberl<br/><br/>1.1 Introduction 1<br/><br/>1.2 Global Ecological and Socioeconomic Biomass Flows 3<br/><br/>1.3 Global Biomass Potentials in 2050 5<br/><br/>1.4 Critical Socio-Ecological Feedbacks and Sustainability Issues 9<br/><br/>1.5 Conclusions 12<br/><br/>Acknowledgements 12<br/><br/>References 13<br/><br/>2 The Growing Role of Photovoltaic Solar, Wind and Geothermal Energy as Renewables for Electricity Generation 19<br/>W.G.J.H.M. van Sark, J.G. Schepers, and J.D.A.M. van Wees<br/><br/>2.1 General Introduction 19<br/><br/>2.2 Photovoltaic Solar Energy 21<br/><br/>2.3 Wind Energy 24<br/><br/>2.4 Geothermal Energy 28<br/><br/>2.5 Conclusion 33<br/><br/>References 34<br/><br/>3 Assessment of Sustainability within Holistic Process Design 37<br/>Alexei Lapkin, Philipp]Maximilian Jacob, Polina Yaseneva, Charles Gordon, and Amy Peace<br/><br/>3.1 Introduction: Holistic Process Design from Unit Operations to Systems Science Methods 37<br/><br/>3.2 Use of Life Cycle Assessment in Holistic Process Design 40<br/><br/>3.3 A Decision-Tree Methodology for Complex Process Design 41<br/><br/>3.4 Generation of New Synthesis Routes in Bio-Based Supply Chains 45<br/><br/>3.5 Conclusions 47<br/><br/>Acknowledgements 48<br/><br/>References 48<br/><br/>4 A Mass Balance Approach to Link Sustainable Renewable Resources in Chemical Synthesis with Market Demand 51<br/>Claudius Kormann and Andreas Kicherer<br/><br/>4.1 Introduction 51<br/><br/>4.2 Renewable Feedstock: Market Drivers, Political Frame 52<br/><br/>4.3 Traceability of Biomass as Feedstock in the Chemical Industry 53<br/><br/>4.4 Standard of Mass Balance in Chemical Synthesis 57<br/><br/>4.5 Sustainability Aspects of Renewable Resources 60<br/><br/>4.6 Discussion 61<br/><br/>4.7 Vision and Summary 62<br/><br/>References 63<br/><br/>5 Early R&D Stage Sustainability Assessment: The 5 Pillar Method 65<br/>Akshay D. Patel, John A. Posada, Li Shen, and Martin K. Patel<br/><br/>5.1 Introduction 65<br/><br/>5.2 Methodology 67<br/><br/>5.3 Case Study 73<br/><br/>5.4 Validation Case Study 75<br/><br/>5.5 Critical Review and Outlook 76<br/><br/>5.6 Conclusion 79<br/><br/>References 79<br/><br/>6 Assessing the Sustainability of Land Use: A Systems Approach 81<br/>Miguel Brandão<br/><br/>6.1 Introduction 81<br/><br/>6.2 Methodological Issue 1: Consequential Analysis of Land Use Decisions 82<br/><br/>6.3 Methodological Issue 2: Land Use Impacts on Ecosystems 87<br/><br/>6.4 Methodological Issue 3: Land Use Impacts on Climate 89<br/><br/>6.5 Methodological Issue 4: Economic and Social Impact Assessment 90<br/><br/>6.6 Methodological Issue 5: Integrating Environmental and Economic Assessments 92<br/><br/>6.7 Discussion 93<br/><br/>6.8 Conclusions 94<br/><br/>References 94<br/><br/>7 Water Use Analysis 97<br/>Francesca Verones, Stephan Pfister, and Markus Berger<br/><br/>7.1 Introduction 97<br/><br/>7.2 Methods and Tools for Assessing the Sustainable Use of Water 98<br/><br/>7.3 Case Study: Water Consumption Analysis of Biofuels and Fossil Fuels 102<br/><br/>7.4 Discussion and Conclusion 105<br/><br/>References 106<br/><br/>8 Material Intensity of Food Production and Consumption 109<br/>Lucia Mancini and Michael Lettenmeier<br/><br/>8.1 Introduction 109<br/><br/>8.2 Material Flow Based Approaches for Assessing Sustainable Production and Consumption Systems 110<br/><br/>8.3 MIPS Concept and Methodology 111<br/><br/>8.4 Material Intensity of Food Systems 113<br/><br/>8.5 Results of MIPS for Agricultural Products and Foodstuffs 118<br/><br/>8.6 Conclusions 121<br/><br/>References 122<br/><br/>9 Material and Energy Flow Analysis 125<br/>Goto Naohiro, Nova Ulhasanah, Hirotsugu Kamahara, Udin Hasanudin, Ryuichi Tachibana, and Koichi Fujie<br/><br/>9.1 Background 125<br/><br/>9.2 Methodology 128<br/><br/>9.3 Case Study 131<br/><br/>9.4 Conclusion 139<br/><br/>Acknowledgements 139<br/><br/>References 139<br/><br/>10 Exergy and Cumulative Exergy Use Analysis 141<br/>Sofie Huysman, Thomas Schaubroeck, and Jo Dewulf<br/><br/>10.1 What Is Exergy 141<br/><br/>10.2 Calculation of Exergy 142<br/><br/>10.3 Applications of Exergy 144<br/><br/>10.4 Cumulative Exergy Use Analysis 146<br/><br/>10.5 Conclusions 151<br/><br/>References 152<br/><br/>11 Carbon and Environmental Footprint Methods for Renewables based Products and Transition Pathways to 2050 155<br/>Geoffrey P. Hammond<br/><br/>11.1 Introduction 155<br/><br/>11.2 Carbon and Environmental (or Eco) Footprinting 159<br/><br/>11.3 The Relationship between Environmental Footprint Analysis (EFA) and Environmental Life]Cycle Assessment (LCA) 166<br/><br/>11.4 Carbon and Environmental Footprints Associated with Global Biofuel Production 167<br/><br/>11.5 Carbon and Environmental Footprints of Low Carbon Transition Pathways 171<br/><br/>11.6 Concluding Remarks 174<br/><br/>Acknowledgements 175<br/><br/>References 176<br/><br/>12 Tracking Supply and Demand of Biocapacity through Ecological Footprint Accounting 179<br/>David Lin, Alessandro Galli, Michael Borucke, Elias Lazarus, Nicole Grunewald, Jon Martindill, David Zimmerman, Serena Mancini, Katsunori Iha, and Mathis Wackernagel<br/><br/>12.1 Summary and Rationale 179<br/><br/>12.2 Methodology 182<br/><br/>12.3 Usage Recommendations 193<br/><br/>12.4 Future Developments 195<br/><br/>References 195<br/><br/>13 Life Cycle Assessment and Sustainability Supporting Decision Making by Business and Policy 201<br/>Sala Serenella, Fabrice Mathieux, and Rana Pant<br/><br/>13.1 Life Cycle Assessment: A Systemic Approach to Evaluate Impacts 201<br/><br/>13.2 LCA: Supporting Sustainability Assessment 205<br/><br/>13.3 Role of LCA in Supporting Decisions in Business and Policy Context 206<br/><br/>13.4 Tools and Support to Put LCA into Practice 210<br/><br/>13.5 Conclusion and the Way Forward 211<br/><br/>Acknowledgements 211<br/><br/>References 212<br/><br/>14 Life Cycle Costing 215<br/>Andreas Ciroth, Jutta Hildenbrand, and Bengt Steen<br/><br/>14.1 Life Cycle Costing – Definition and Principles 215<br/><br/>14.2 Environmental LCC 216<br/><br/>14.3 Societal LCC 220<br/><br/>14.4 LCC and Renewables 221<br/><br/>14.5 Example Case 222<br/><br/>References 228<br/><br/>15 Social Life Cycle Assessment: Methodologies and Practice 229<br/>Alessandra Zamagni, Pauline Feschet, Anna Irene De Luca, Nathalie Iofrida, and Patrizia Buttol<br/><br/>15.1 Introduction 229<br/><br/>15.2 Social Life Cycle Assessment: Scientific Background 230<br/><br/>15.3 Social Life Cycle Assessment in Practice 232<br/><br/>15.4 SLCA and Life Cycle Sustainability Assessment: Methodological Challenges 234<br/><br/>15.5 Conclusions and Outlook 236<br/><br/>References 237<br/><br/>16 Life Cycle Assessment of Solar Technologies 241<br/>F. Ardente, M. Cellura, S. Longo, and M. Mistretta<br/><br/>16.1 Introduction 241<br/><br/>16.2 Solar Technologies 242<br/><br/>16.3 Life Cycle Assessment (LCA) and Solar Technologies 245<br/><br/>16.3.1 Solar Thermal Plants 246<br/><br/>16.3.2 Photovoltaic Plants 246<br/><br/>16.3.3 Concentrating Solar Power (CSP) Plants and Solar Heating/Cooling Plants 249<br/><br/>16.4 Assessment of Solar Technologies 249<br/><br/>16.5 Conclusions 256<br/><br/>References 256<br/><br/>17 Assessing the Sustainability of Geothermal Utilization 259<br/>Ruth Shortall, Gudni Axelsson, and Brynhildur Davidsdottir<br/><br/>17.1 Introduction 259<br/><br/>17.2 Sustainable Geothermal Utilization 260<br/><br/>17.3 Broader Sustainability Assessment of Energy Developments 266<br/><br/>17.4 Sustainability Assessment Framework for Geothermal Power 266<br/><br/>17.5 Conclusion 271<br/><br/>References 271<br/><br/>18 Biofuels from Terrestrial Biomass: Sustainability Assessment of Sugarcane Biorefineries in Brazil 275<br/>Otavio Cavalett, Marcos D.B. Watanabe, Alexandre Souza, Mateus F. Chagas, Tassia L. Junqueira, and Antonio Bonomi<br/><br/>18.1 Introduction 275<br/><br/>18.2 The Virtual Sugarcane Biorefinery (VSB) 276<br/><br/>18.3 Methods Used in the VSB 277<br/><br/>18.4 Biorefinery Scenarios Case Study 279<br/><br/>18.5 Final Remarks 286<br/><br/>Acknowledgements 286<br/><br/>References 287<br/><br/>19 Algae as Promising Biofeedstock; Searching for Sustainable Production Processes and Market Applications 289<br/>Sue Ellen Taelman, Steven De Meester, and Jo Dewulf<br/><br/>19.1 Introduction 289<br/><br/>19.2 Algae Background 290<br/><br/>19.3 Algal Cultivation and Processing Methods 292<br/><br/>19.4 Algae: Production and Potential Applications 294<br/><br/>19.5 Environmental Sustainability of Algae Production 298<br/><br/>19.6 Conclusions 302<br/><br/>References 303<br/><br/>20 Life Cycle Assessment of Biobased and Fossil Based Succinic Acid 307<br/>Marieke Smidt, Jeroen den Hollander, Henk Bosch, Yang Xiang, Maarten van der Graaf, Anne Lambin, and Jean]Pierre Duda<br/><br/>20.1 Production of Succinic Acid 307<br/><br/>20.2 Life Cycle Assessment: Biobased Succinic Acid and Fossil]Based Equivalent 310<br/><br/>20.3 Sensitivity Analysis 316<br/><br/>20.4 Conclusions 319<br/><br/>References 320<br/><br/>21 Biobased Poly Vinylchloride (PVC) 323<br/>Rodrigo A.F. Alvarenga, Zdenek Hruska, Alain Wathelet, and Jo Dewulf<br/><br/>21.1 Introduction 323<br/><br/>21.2 Life Cycle Assessment of Biobased PVC 324<br/><br/>21.3 Carbon Footprint of Biobased Product 329<br/><br/>21.4 Environmental Sustainability of Bioethanol Use 330<br/><br/>21.5 Conclusions 331<br/><br/>References 332<br/><br/>22 Evaluation of Wood Cascading 335<br/>Karin Höglmeier, Gabriele Weber-Blaschke, and Klaus Richter<br/><br/>22.1 Introduction 335<br/><br/>22.2 Environmental Assessment of Wood Cascading by LCA 338<br/><br/>22.3 Discussion and Conclusion 343<br/><br/>Acknowledgements 345<br/><br/>References 345<br/><br/>23 Time]Dependent Life Cycle Assessment of Bio-Based Packaging Materials 347<br/>Maartje N. Sevenster<br/><br/>23.1 Introduction 347<br/><br/>23.2 Methodology 351<br/><br/>23.3 Results 353<br/><br/>23.4 Discussion 357<br/><br/>23.5 Conclusions 358<br/><br/>References 358<br/><br/>24 Conclusions 361<br/>Jo Dewulf<br/><br/>24.1 The Importance of Renewables]Based Products and Services 361<br/><br/>24.2 The Need for Sustainability Assessment for Renewables: Even More Than in the Past 362<br/><br/>24.3 The Growing Sustainability Assessment Toolbox 363<br/><br/>24.4 Outlook: Pending Challenges 364<br/><br/>Index
520 ## - SUMMARY, ETC.
Summary, etc Over the past decade, renewables-based technology and sustainability assessment methods have grown tremendously. Renewable energy and products have a significant role in the market today, and the same time sustainability assessment methods have advanced, with a growing standardization of environmental sustainability metrics and consideration of social issues as part of the assessment.<br/><br/>Sustainability Assessment of Renewables-Based Products: Methods and Case Studies is an extensive update and sequel to the 2006 title Renewables-Based Technology: Sustainability Assessment. It discusses the impressive evolution and role renewables have taken in our modern society, highlighting the importance of sustainability principles in the design phase of renewable-based technologies, and presenting a wide range of sustainability assessment methods suitable for renewables-based technologies, together with case studies to demonstrate their applications.<br/><br/>This book is a valuable resource for academics, businesses and policy makers who are active in contributing to more sustainable production and consumption.<br/><br/>For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs<br/><br/>Topics covered include:<br/><br/>The growing role of renewables in our society<br/>Sustainability in the design phase of products and processes<br/>Principles of sustainability assessment<br/>Land use analysis<br/>Water use analysis<br/>Material and energy flow analysis<br/>Exergy and cumulative exergy analysisCarbon and environmental footprint methods<br/>Life Cycle Assessment (LCA), social Life Cycle Assessment and Life Cycle Costing (LCC)<br/>Case studies: renewable energy, bio-based chemicals and bio-based materials.
545 0# - BIOGRAPHICAL OR HISTORICAL DATA
Biographical or historical note About the Author<br/>Prof. Dr. Jo Dewulf, Institute for Environment and Sustainability, JRC, European Commision, Italy and Sustainable Organic Chemistry and Technology, Ghent University, Belgium<br/>Professor Dewulf performs research in the areas of environmental chemistry, environmental technology and clean technology at Ghent University. Since December 2013, he has been working as a senior researcher in the Institute for Environment and Sustainability at the Joint Research Institute of the European Commission. Key in his work is managing natural resources in a technically efficient way, performing thermodynamics based sustainability analysis at process, plant and cradle-to-gate level to support the development and assessment of new technologies.<br/><br/>Supported by:<br/><br/>Dr Steven De Meester, Sustainable Organic Chemistry and Technology, Ghent University, Belgium<br/>Dr De Meester works on the development of sustainability assessment methodologies for new technologies and applications of Life Cycle Assessment in industry.<br/><br/>Dr Rodrigo Alvarenga, Universidade Federal de Santa Catarina, Brazil
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Sustainable engineering.
Authority record control number http://id.loc.gov/authorities/subjects/sh2006001869.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Sustainable design.
Authority record control number http://id.loc.gov/authorities/subjects/sh2007001468.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Renewable natural resources.
Authority record control number http://id.loc.gov/authorities/subjects/sh85112839.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Dewulf, Jo,
Authority record control number http://id.loc.gov/authorities/names/n2005084007
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Meester, Steven De,
Dates associated with a name 1985-
Authority record control number http://id.loc.gov/authorities/names/no2015165142
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Alvarenga, Rodrigo,
Authority record control number http://id.loc.gov/authorities/names/no2015121234
Relator term editor.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element Ohio Library and Information Network.
Authority record control number http://id.loc.gov/authorities/names/no95058981.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Wiley series in renewable resources.
Authority record control number http://id.loc.gov/authorities/names/n2005054964.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781118933916
Link text Full text available at Wiley Online Library Click here to view.
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2025-03-24 52076 628 Su826 2015 CL-52076 2025-03-24 2025-03-24 EBOOK