Contemporary accounts in drug discovery and development / (Record no. 89664)

000 -LEADER
fixed length control field 19239nam a2200433Ii 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250310102855.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m o d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu|||unuuu
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250310b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119627715
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119627784
Qualifying information (electronic bk. : oBook)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119627788
Qualifying information (electronic bk. : oBook)
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1002/9781119627784
Source of number or code doi
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1305503238
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number RM301.25
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 615.1/9
Edition number 23
245 00 - TITLE STATEMENT
Title Contemporary accounts in drug discovery and development /
Statement of responsibility, etc edited by Xianhai Huang, Robert G. Aslanian, Wayne H. Tang.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, NJ :
Name of publisher, distributor, etc Wiley,
Date of publication, distribution, etc 2022.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource.
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent.
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia.
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier.
340 ## - PHYSICAL MEDIUM
Source rdacc
Authority record control number or standard number http://rdaregistry.info/termList/RDAColourContent/1003.
500 ## - GENERAL NOTE
General note Includes index.
505 0# - CONTENTS
Formatted contents note Table of Contents<br/>PREFACE<br/><br/>CONTRIBUTORS<br/><br/>CHAPTER 1 CURRENT DRUG DISCOVERY: GREAT CHALLENGES AND GREAT OPPORTUNITY (AN INTRODUCTION TO CONTEMPORARY ACCOUNTS IN DRUG DISCOVERY AND DEVELOPMENT)<br/>Jeffrey J. Hale<br/><br/>CHAPTER 2 ADVANCED COMPUTATIONAL MODELING ACCELERATING SMALL-MOLECULE DRUG DISCOVERY: A GROWING TRACK RECORD OF SUCCESS<br/>Robert Abel<br/><br/>2.1 Introduction<br/><br/>2.2 Essential Techniques<br/><br/>2.2.1 Target Validation and Feasibility Assessment<br/><br/>2.2.2 Hit Discovery<br/><br/>2.2.3 Hit-to-lead and Lead Optimization<br/><br/>2.3 Illustrative Applications<br/><br/>2.3.1 Modeling Support of Target Validation, Feasibility Assessment, and Hit Discovery for Acetyl-CoA Carboxylase (ACC)<br/><br/>2.3.2 Optimizing Selectivity in Lead Optimization for Tyrosine Kinase 2<br/><br/>2.3.3 Discovery of Novel Allosteric Covalent Inhibitors of KRASG12C<br/><br/>2.3.4 Supporting Hit to Lead Exploration for a Series of Phosphodiesterase 2A (PDE2A) Inhibitors<br/><br/>2.4 Conclusion and Future Outlook<br/><br/>References<br/><br/>CHAPTER 3 DISCOVERY AND DEVELOPMENT OF THE SOLUBLE GUANYLATE CYCLASE (sGC) STIMULATOR VERICIGUAT FOR THE TREATMENT OF CHRONIC HEART FAILURE<br/>Markus Follmann, Corina Becker, Lothar Roessig, Peter Sandner, and Johannes-Peter Stasch<br/><br/>3.1 Introduction<br/><br/>3.2 sGC Stimulators as Treatment Option for Heart Failure<br/><br/>3.2.1 Persistent High Medical Need in High-risk Patients with Chronic HF<br/><br/>3.3 Medicinal Chemistry Program<br/><br/>3.4 Synthesis Routes towards Vericiguat<br/><br/>3.4.1 Medicinal Chemistry Route to Vericiguat<br/><br/>3.4.2 Development Chemistry Route to Vericiguat<br/><br/>3.5 Preclinical Studies<br/><br/>3.5.1 In Vitro Effects on Recombinant sGC and sGC Overexpressing Cells<br/><br/>3.5.2 Ex Vivo Effects on Isolated Blood Vessels and Hearts<br/><br/>3.5.3 In Vivo Effects in a Disease Model with Cardiovascular Disease and Heart- and Kidney Failure<br/><br/>3.6 Clinical Studies<br/><br/>3.6.1 Safety, PD, PK and PK/PD in Healthy Volunteers<br/><br/>3.6.2 Clinical Pharmacokinetics<br/><br/>3.6.3 Pharmacodynamic Interactions<br/><br/>3.7 Summary<br/><br/>References<br/><br/>CHAPTER 4 FINDING CURES FOR ALZHEMIER’S DISEASE: FROM GAMMA SECRETASE INHIBITORS TO GAMMA SECRETASE MODULATORS AND BETA SECRETASE INHIBITORS<br/>Xianhai Huang, Robert Aslanian<br/><br/>4.1 Introduction<br/><br/>4.1.1 Alzheimer’s Disease<br/><br/>4.1.2 Alzheimer’s Disease and Amyloid Beta Theory<br/><br/>4.2 Gamma Secretase Inhibitors Drug Discovery and Development<br/><br/>4.2.1 Gamma Secretase Inhibitors Rationale<br/><br/>4.2.2 The Discovery of Gamma Secretase Inhibitors SCH 900229<br/><br/>4.2.2.1 The Discovery of 2,6-Disubstituted Piperidine Sulfonamide Gamma Secretase Inhibitors<br/><br/>4.2.2.2 The Discovery of Tricyclic Sulfones GSIs and a Preclinical Candidate SCH 900229<br/><br/>4.2.3 Gamma Secretase Inhibitors Summary<br/><br/>4.3 Gamma Secretase Modulator Drug Discovery and Development<br/><br/>4.3.1 Gamma Secretase Modulator Rationale<br/><br/>4.3.2 The Discovery of Oxadiazoline and Oxadiazine Gamma Secretase Modulators<br/><br/>4.3.2.1 The Pyrazolopyridine Series of Gamma Secretase Modulators<br/><br/>4.3.2.2 The Discovery of Oxadiazoline, Oxadiazine, and Oxadiazepine Gamma Secretase Modulators<br/><br/>4.3.2.3 Profiles of Gamma Secretase Modulator Preclinical Candidates (PCC)<br/><br/>4.3.3 On-going Gamma Secretase Modulators Discovery<br/><br/>4.4 Beta Secretase Inhibitors Overview<br/><br/>4.4.1 Beta Secretase Inhibitors Rationale<br/><br/>4.4.2 Brief Summary of Verubecestat (MK-8931) Discovery and Clinical Development<br/><br/>4.4.3 BACE1 Inhibitors Summary<br/><br/>4.5 Summary<br/><br/>Acknowledgement<br/><br/>References<br/><br/>CHAPTER 5 DISCOVERY OF NOVEL ANTIVIRAL AGENTS ENABLED BY STRUCTURAL BIOLOGY, COMPACT MODULES AND PHENOTYPIC SCREENING<br/>Wei Zhu, Song Yang, Hongying Yun, and Hong C. Shen<br/><br/>5.1 Introduction<br/><br/>5.2 Discovery and Early Development of Novel Core Protein Assembly Modulators for the Treatment of chronic HBV infection<br/><br/>5.2.1 Introduction<br/><br/>5.2.2 Lead Generation and Optimization<br/><br/>5.2.3 Profile of Compound 3<br/><br/>5.2.4 Approaches to Address CYP Induction Liability<br/><br/>5.2.5 Conclusion<br/><br/>5.3 RG7834: The First-in-class Selective and Orally Bioavailable Small Molecule HBV Expression Inhibitor with a Novel Mode of Action<br/><br/>5.3.1 Introduction<br/><br/>5.3.2 The Discovery of RG7834<br/><br/>5.3.2.1 Lead Generation<br/><br/>5.3.2.2 Lead Optimization<br/><br/>5.3.2.3 Profile of RG7834<br/><br/>5.3.2.4 Target Identification<br/><br/>5.3.3 Conclusion<br/><br/>5.4 Ziresovir: the Discovery of a Highly Potent, Selective and Orally Bioavailable RSV Fusion Protein Inhibitor<br/><br/>5.4.1 Introduction<br/><br/>5.4.2 The Discovery of Ziresovir (RO-0529 OR ARK0529)<br/><br/>5.4.2.1 Lead Generation<br/><br/>5.4.2.2 Lead Optimization<br/><br/>5.4.2.3 Profile of Ziresovir<br/><br/>5.4.2.4 Mode of Action of Ziresovir<br/><br/>5.4.3 Clinical Studies of Ziresovir<br/><br/>5.5 Conclusion<br/><br/>References<br/><br/>CHAPTER 6 DISCOVERY OF SUBTYPE SELECTIVE AGONISTS OF THE GROUP II METABOTROPIC GLUTAMATE RECEPTORS<br/>Junliang Hao<br/><br/>6.1 Background<br/><br/>6.1.1 The Dopamine and Glutamate Hypotheses of Schizophrenia<br/><br/>6.1.2 The Ionotropic and Metabotropic Glutamate Receptors<br/><br/>6.1.3 Orthosteric Agonists of the Group II mGlu Receptors<br/><br/>6.1.4 Prodrug Approach to Improve Oral Bioavailability<br/><br/>6.1.5 Clinical Studies of 6 in Schizophrenia (via its Prodrug 7)<br/><br/>6.1.6 Rationale for Subtype Selective Agonists of the Group II mGlu Receptors<br/><br/>6.2 Discovery of Subtype Selective Agonist LY2812223 of the mGlu2 Receptor<br/><br/>6.2.1 Barriers to Achieve High Subtype Selectivity at the Orthosteric Site<br/><br/>6.2.2 Discovery of Subtype Selective Agonists for the mGlu2 Receptor<br/><br/>6.2.3 Additional In Vitro Characterization of 11<br/><br/>6.2.4 Preclinical Pharmacokinetic Profile of 11<br/><br/>6.2.5 Preclinical Animal Model of Psychosis<br/><br/>6.3 Discovery of Subtype Selective Agonist LY2794193 of the mGlu3 Receptor<br/><br/>6.3.1 Discovery of Subtype Selective Agonists for the mGlu3 Receptor<br/><br/>6.3.2 Additional In Vitro Characterization of 19<br/><br/>6.3.3 Preclinical Pharmacokinetic Profile of 19<br/><br/>6.3.4 Preclinical Animal Model<br/><br/>6.4 Structural Basis for Subtype Selectivity<br/><br/>6.4.1 Crystal Structures of hmGlu2 and hmGlu3 ATDs in Complex with 3 and L-Glu<br/><br/>6.4.2 Crystal Structures of hmGlu2 and hmGlu3 ATDs in Complex with 11 and 19<br/><br/>6.4.3 Structural Basis for the mGlu2 Subtype Selectivity of 11 and the mGlu3 Subtype Selectivity of 19<br/><br/>6.5 Divergent Synthesis of 11 and 19<br/><br/>6.6 Clinical Experience with mGlu2 Selective Agonist 11 (via Its Prodrug 12)<br/><br/>6.6.1 Human Plasma and CSF PK Profiles of 11<br/><br/>6.6.2 Biomarker<br/><br/>6.6.3 Safety<br/><br/>6.7 Conclusion<br/><br/>References<br/><br/>CHAPTER 7 DISCOVERY OF TASELISIB (GDC-0032): AN INHIBITOR OF PI3K WITH SELECTIVITY OVER PI3K<br/>Timothy P. Heffron, Laurent Salphati, and Steven T. Staben<br/><br/>7.1 Introduction<br/><br/>7.2 Hit to Lead Efforts<br/><br/>7.3 Final Lead Optimization Leading to Discovery of Taselisib: ADME Optimization and Achieving Selective Inhibition of PI3K over PI3K<br/><br/>7.4 Preclinical in vivo Pharmacology of Taselisib<br/><br/>7.5 Prediction and Clinical Assessment of Taselisib Human Pharmacokinetics<br/><br/>7.6 Conclusion<br/><br/>References<br/><br/>CHAPTER 8 DRUG DISCOVERY WITH DNA-ENCODED LIBRARY TECHNOLOGY: INHIBITOR OF SOLUBLE EPOXIDE HYDROLASE TO CLINICAL CANDIDATE<br/>Yun Ding, Sarah K. Scott<br/><br/>8.1 Background of DNA-encode Library Technology<br/><br/>8.1.1 Development of Encoding Strategies<br/><br/>8.1.2 The Encoding Strategy at GSK<br/><br/>8.1.3 Development of DNA-Compatible Chemistry<br/><br/>8.1.4 Methods for in vitro Selection of DNA-encoded Libraries<br/><br/>8.1.5 Decoding, Data Analysis and Off-DNA Hit Follow up<br/><br/>8.2 Application of DNA-encoded Library Technology in Small Molecule Drug Discovery<br/><br/>8.3 Discovery of sEH Inhibitors via DNA-encoded Library Technology<br/><br/>8.3.1 DEL Libraries for sEH Screening<br/><br/>8.3.2 sEH ELT Selection<br/><br/>8.3.3 ELT Hit Confirmation, SAR and Hit-to-lead Optimization<br/><br/>8.3.4 Lead Optimization, Preclinical and Clinical Development: GSK2256294 as a Clinical Asset<br/><br/>8.3.5 Clinical trials with GSK2256294<br/><br/>8.4 Summary<br/><br/>References<br/><br/>CHAPTER 9 DISCOVERY OF HTL26119: FAMILY B GPCR STRUCTURE-BASED DRUG DESIGN IS NOW A REALITY<br/>Andrea Bortolato, Jonathan S. Mason<br/><br/>9.1 Introduction<br/><br/>9.2 G Protein-Coupled Receptor Structure Based Drug Discovery<br/><br/>9.3 The Beginning of the Family B GPCR Structural Biology Revolution<br/><br/>9.4 Lessons Learned from the Corticotropin-Releasing Factor Receptor Type 1 Crystal Structure<br/><br/>9.5 Structural Understanding of Glucagon and GLP1 Receptor Activation<br/><br/>9.6 Hyperinsulinaemic Hypoglycaemia<br/><br/>9.7 GLP1 Receptor Negative Allosteric Modulator Lead Identification<br/><br/>9.8 GLP1 Receptor Negative Allosteric Modulator Lead Optimization<br/><br/>9.9 Conclusion<br/><br/>References<br/><br/>CHAPTER 10 DISCOVERY AND POTENTIAL APPLICATION OF [11C]MK-6884: A POSITRON EMISSION TOMOGRAPHY (PET) IMAGING AGENT FOR THE STUDY OF M4 MUSCARINIC RECEPTOR POSITIVE ALLOSTERIC MODULATORS (PAMs) IN NEURODEGENERATIVE DISEASES<br/>Ling Tong, Wenping Li<br/><br/>10.1 Introduction<br/><br/>10.1.1 Positron Emission Tomography<br/><br/>10.1.2 Muscarinic Acetylcholine Receptor 4 (M4) Positive Allosteric Modulator<br/><br/>10.2 Discovery of a Selective PET Tracer for M4 PAM<br/><br/>10.2.1 Criteria for a PET Tracer<br/><br/>10.2.2 PET Feasibility Study<br/><br/>10.2.3 PET Specific Signal is Driven by an Increase in Binding Affinity<br/><br/>10.2.4 The Implication of Lipophilicity and Free Fraction on in vivo BPND<br/><br/>10.2.5 Fluorine-18 Labeling Opportunity<br/><br/>10.3. A PET Tracer That Images M4 in Rat<br/><br/>10.4. Characterization of [11C]10 as a PET Tracer Preclinical Candidate (PCC) for Human Use<br/><br/>10.5 Development of [11C]MK-6884<br/><br/>Acknowledgement<br/><br/>References<br/><br/>CHAPTER 11 TARGETED PROTEIN DEGRADATION BY PROTEOLYSIS TARGETING CHIMERAS (PROTACs): A REVOLUTION IN SMALL MOLECULE DRUG DISCOVERY<br/>Wu Du<br/><br/>11.1 The Concept of Targeted Protein Degradation<br/><br/>11.1.1 Introduction<br/><br/>11.1.2 The Ubiquitin-Proteasome System<br/><br/>11.1.3 Targeted Protein Degradation by Proteolysis Targeting Chimeras (PROTACs)<br/><br/>11.2 The Advances of with PROTACs<br/><br/>11.2.1 Proof of Concept and Early Peptide Based PROTACs<br/><br/>11.2.2 Small Molecule Based PROTACs: the Discovery of VHL and CRBN E3 Ligands<br/><br/>11.2.3 Ligands for E3 Ligase<br/><br/>11.2.4 Mechanistic Considerations: the Ternary Complex and the Kinetics<br/><br/>11.2.5 Androgen Receptor (AR) PROTACs: a Case Study<br/><br/>11.2.6 Novel PROTACs: Self-assembled Click-formed PROTACs (CLIPTACs), Photo-chemically Controlled PROTACs (PHOTACs), Antibody-PROTAC Conjugates<br/><br/>11.2.7 Examples of Small Molecule Based PROTACs<br/><br/>11.3 Pharmacokinetics and Oral Absorption Challenge<br/><br/>11.4 PROTACs in Clinical Development<br/><br/>11.4.1 Androgen Receptor Targeting PROTAC ARV-110<br/><br/>11.4.2 Estrogen Receptor Targeting PROTAC ARV-471<br/><br/>11.5 Challenges and Perspectives<br/><br/>Acknowledgments<br/><br/>References<br/><br/>CHAPTER 12 ENTREPRENEURIAL DRUG HUNTER: MACROCYCLIC PEPTIDE MODALITIES<br/>Tomi Sawyer<br/><br/>12.1 Introduction<br/><br/>12.2 Macrocyclic Peptide Modalities in Retrospect<br/><br/>12.3 Receptor and Extracellularly Targeted Macrocyclic Peptides<br/><br/>12.4 Intracellular Protein-protein Interaction Targeted Macrocyclic Peptides<br/><br/>12.5 Macrocyclic Peptide Advancement to Clinical Development and FDA Approval<br/><br/>12.6 Macrocyclic Peptide Drug Discovery Paradigm and Future Directions<br/><br/>Acknowledgement<br/><br/>References<br/><br/>CHAPTER 13 APPLICATION OF PYRROLOBENZODIAZEPINE (PBD) IN ANTIBODY DRUG CONJUGATES<br/>Ning Zou, Amy Han<br/><br/>13.1 Introduction<br/><br/>13.2 Antibody drug conjugating with PBD payloads<br/><br/>13.2.1 SG-3199 (payload), SG-3249 (linker-payload), and SG-3199 Based ADCs<br/><br/>13.2.1.1 ADCT-301<br/><br/>13.2.1.2 ADCT-401<br/><br/>13.2.1.3 ADCT-402<br/><br/>13.2.1.4 ADCT-502<br/><br/>13.2.1.5 ADCT-602<br/><br/>13.2.1.6 Rovalpituzumab Tesirine (Rova-T)<br/><br/>13.2.1.7 ADCT-601<br/><br/>13.2.1.8 MEDI2228<br/><br/>13.2.1.9 TR1801-ADC (MT-8633)<br/><br/>13.2.2 SGD-1882 (payload), SGD-1910 (linker-payload), and SGD-1882 Based ADCs<br/><br/>13.2.2.1 SGN-CD33A (Vadastuximab Talirine)<br/><br/>13.2.2.2 SGN-CD70A<br/><br/>13.2.2.3 SGN-CD19B<br/><br/>13.2.2.4 SGN-CD123A<br/><br/>13.2.2.5 SGN-CD352A<br/><br/>13.2.2.6 ABBV-176<br/><br/>13.2.2.7 ABBV-321<br/><br/>13.2.3 IGN Payloads-based ADCs<br/><br/>13.2.3.1 IMGN779<br/><br/>13.2.3.2 IMGN632<br/><br/>13.2.3.3 TAK-164<br/><br/>13.2.4. Other PBD-based Payload ADCS<br/><br/>13.2.4.1 PBD-MA<br/><br/>13.2.4.2 Pyrridinobenzodiazepines (PDDs)<br/><br/>13.2.4.3 Isoquinolidinobenzodiazepine Dimers (IQBs)<br/><br/>13.2.4.4 PBD-Duocarmycin Dimers<br/><br/>13.2.4.5 PBD Dimer with Thio-oxophosphane Moiety<br/><br/>13.3 Small Molecule Drug Conjugates with pro-PBD Payloads<br/><br/>13.3.1 N-Substituted 1,3-Oxazolidine pro-PBD<br/><br/>13.3.2 Oxime Ether pro-PBD<br/><br/>13.4 Discussion<br/><br/>13.5 Conclusion<br/><br/>References <br/><br/>CHAPTER 14 COMBINATION THERAPY CASE STUDIES IN ANTICANCER AND ANTI-INFECTIOUS DISEASE DRUG DISCOVERY AND DEVELOPMENT<br/>Xianhai Huang, David Yu-Kai Chen<br/><br/>14.1. Introduction<br/><br/>14.1.1. Combination Therapy in Anticancer Drug Discovery and Development<br/><br/>14.1.2. Combination Therapy in Antibacterial Drug Discovery and Development<br/><br/>14.2. Case Study of Olaparib (Lynparza®) and Bevacizumab (Avastin®) Combination in the Treatment of Advanced Ovarian Cancer<br/><br/>14.2.1. Discovery and Development History of Olaparib and Bevacizumab in the Treatment of Ovarian Cancer<br/><br/>14.2.1.1 Discovery and Development History of Olaparib in the Treatment of Ovarian Cancer<br/><br/>14.2.1.2 Discovery and Development History of Bevacizumab in the Treatment of Ovarian Cancer<br/><br/>14.2.2. Rational Design of Olaparib and Bevacizumab Combination<br/><br/>14.2.3. Olaparib and Bevacizumab Combination in Clinical Studies<br/><br/>14.2.3.1. Phase I Clinical Studies of the Olaparib and Bevacizumab Combination<br/><br/>14.2.3.2. Phase II Clinical Studies of Olaparib and Bevacizumab Combination<br/><br/>14.2.3.3. Phase III Clinical Studies of Olaparib and Bevacizumab Combination<br/><br/>14.2.4. Summary of the Olaparib and Bevacuzimab Combination<br/><br/>14.3. Case Study of Ceftazidime and Avibactam Combination (Avycaz®) in the Treatment of Complicated Urinary Tract Infections (cUTIs) and Intra-Abdominal Infections (cIAIs)<br/><br/>14.3.1. Brief History of the Discovery of Ceftazidime and Avibactam and the Rational for the Combination of Ceftazidime and Avibactam in the Treatment of Complicated Urinary Tract Infections (cUTIs) and Intra-Abdominal Infections (cIAIs)<br/><br/>14.3.2. PK, Safety and Tolerability of Ceftazidime and Avibactam Combination in Phase I Human Clinical Trials<br/><br/>14.3.3. Clinical Efficacy of the Ceftazidime and Avibactam Combination<br/><br/>14.3.3.1. Ceftazidime and Avibactam Combination Phase II Clinical Trials<br/><br/>14.3.3.2. Ceftazidime and Avibactam Combination Phase III Clinical Trials<br/><br/>14.3.3.2.1 Ceftazidime and Avibactam Combination Phase III Clinical Trials in the Treatment of cUTI<br/><br/>14.3.3.2.2 Ceftazidime and Avibactam Combination Phase III Clinical Trials in the Treatment of cIAI<br/><br/>14.3.3.2.3 Ceftazidime and Avibactam Combination Phase III Clinical Trials in the Treatment of Nosocomial Pneumonia and Ventilator-Associated Pneumonia<br/><br/>14.3.3.2.4 Ceftazidime and Avibactam Combination Phase III Clinical Trials in the Treatment of Pediatric Patients with cUTI and cIAI<br/><br/>14.3.4. Summary of Ceftazidime and Avibactam Combination<br/><br/>14.4. Combination Therapy Future Perspectives<br/><br/>References<br/><br/>CHAPTER 15 ACCELERATING DRUG DISCOVERY AND DEVELOPMENT: TRANSLATIONAL MEDICINE IN COMBATING THE COVID19 PANDEMIC<br/>Xianhai Huang, David Yu-Kai Chen, and Haifeng “Wayne” Tang<br/><br/>15.1. Introduction to Translational Medicine<br/><br/>15.2. From Bench to Bedside: Translating Basic Research into Desirable Clinical Outcomes for COVID-19 Treatments<br/><br/>15.2.1. The Importance of Diagnostic Biomarkers in Speeding up Testing to Contain the Spread of the COVID-19 Virus<br/><br/>15.2.1.1. The Polymerase Chain Reaction (PCR) Test<br/><br/>15.2.1.2. The Antigen Test<br/><br/>15.2.1.3. The Antibody (Serological) Test<br/><br/>15.2.2. The Discovery and Clinical Development of Remdesivir in the Era of the COVID-19 Pandemic<br/><br/>15.2.3. COVID-19 Virus Targeting Antibody Discovery and Development<br/><br/>15.2.4. Accelerated Vaccine Development for COVID-19 Prevention<br/><br/>15.3. From Bedside to Bench: Accelerating Drug Discovery and Development in Treating COVID-19<br/><br/>15.3.1. The Need for an Inhaled Formulation of Remdesivir<br/><br/>15.3.2. Overcoming Cytokine Storm in COVID-19 Treatment<br/><br/>15.4. Translational Medicine Summary<br/><br/>References<br/><br/>APPENDIX I MONOCLONAL ANTIBODY DRUG DISCOVERY AND DEVELOPMENT PARADIGM<br/><br/>APPENDIX II GLOSSARY<br/><br/>APPENDIX III ABBREVIATIONS<br/><br/>INDEX
520 ## - SUMMARY, ETC.
Summary, etc Drug discovery is a lengthy and complex process that typically involves identifying an unmet medical need, determining a biological target, chemical library screening to identify a lead, chemical optimization, preclinical studies and clinical trials. This process often takes many years to complete, and relies on practitioners' knowledge of chemistry and biology, but also-and perhaps more importantly - on experience. Improving the success rate in discovery and development through a thorough knowledge of drug discovery principles and advances in technology is critical for advancement in the field. Contemporary Accounts in Drug Discovery and Development provides drug discovery scientists with the knowledge they need to quickly gain mastery of the drug discovery process. A thorough accounting is given for each drug covered within the book, as the authors provide pharmacology, drug metabolism, biology, drug development, and clinical studies for every case, with modern drug discovery principles and technologies incorporated throughout.
545 0# - BIOGRAPHICAL OR HISTORICAL DATA
Biographical or historical note About the Author<br/>Xianhai Huang, PhD, Executive Director and Head of Discovery Chemistryat InventisBio Co., Ltd.<br/><br/>Robert G. Aslanian, PhD, Associate Professor of Chemistry and Chair of the Department at New Jersey City University.<br/><br/>Wayne H. Tang, PhD, Executive Director and co-Head of Medicinal Chemistry at Schrödinger Inc.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Drug development.
Authority record control number http://id.loc.gov/authorities/subjects/sh97007921.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Drugs
General subdivision Design.
Authority record control number http://id.loc.gov/authorities/subjects/sh88001157.
650 #2 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Drug Design.
Authority record control number https://id.nlm.nih.gov/mesh/D015195.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Huang, Xianhai,
Authority record control number http://id.loc.gov/authorities/names/n2011183903
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Aslanian, Robert G.,
Authority record control number http://id.loc.gov/authorities/names/n2011183904
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Tang, Wayne H.
Fuller form of name (Wayne Haifeng),
Authority record control number http://id.loc.gov/authorities/names/n2021183735
Relator term editor.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781119627784
Link text Full text is available at Wiley Online Library Click here to view
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Source of acquisition Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2025-03-10 ALBASA 51287 615.19 C7672 2022 CL-51287 2025-03-10 2025-03-10 EBOOK