Conversion of water and CO2 to fuels using solar energy : (Record no. 89413)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 16953nam a2200421 i 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20250130154413.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION | |
fixed length control field | m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION | |
fixed length control field | cr cnu|||unuuu |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 250130b ||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781119600848 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781119600862 |
Qualifying information | (electronic bk. : oBook) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 1119600863 |
Qualifying information | (electronic bk. : oBook) |
024 7# - OTHER STANDARD IDENTIFIER | |
Standard number or code | 10.1002/9781119600862 |
Source of number or code | doi |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (OCoLC)1425139192 |
041 ## - LANGUAGE CODE | |
Language code of text/sound track or separate title | eng. |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER | |
Classification number | TK810 |
072 #7 - SUBJECT CATEGORY CODE | |
Subject category code | SCI |
Subject category code subdivision | 024000 |
Source | bisacsh |
072 #7 - SUBJECT CATEGORY CODE | |
Subject category code | TJ |
Source | bicssc |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 621.47/1 |
Edition number | 23/eng/20240306 |
245 00 - TITLE STATEMENT | |
Title | Conversion of water and CO2 to fuels using solar energy : |
Remainder of title | science, technology and materials / |
Statement of responsibility, etc | edited by Oomman K. Varghese, Flavio L. Souza. |
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Place of publication, distribution, etc | Hoboken, NJ : |
Name of publisher, distributor, etc | Wiley, |
Date of publication, distribution, etc | 2024. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 1 online resource (416 pages) |
336 ## - CONTENT TYPE | |
Content type term | text |
Content type code | txt |
Source | rdacontent. |
337 ## - MEDIA TYPE | |
Media type term | computer |
Media type code | c |
Source | rdamedia. |
338 ## - CARRIER TYPE | |
Carrier type term | online resource |
Carrier type code | cr |
Source | rdacarrier. |
340 ## - PHYSICAL MEDIUM | |
Source | rdacc |
Authority record control number or standard number | http://rdaregistry.info/termList/RDAColourContent/1003. |
504 ## - BIBLIOGRAPHY, ETC. NOTE | |
Bibliography, etc | Includes bibliographical references and index. |
505 0# - CONTENTS | |
Formatted contents note | Table of Contents<br/>List of Contributors xiii<br/><br/>Preface xvii<br/><br/>1 Solar Fuel Generation: The Relevance and Approaches 1<br/>Ingrid Rodriguez-Gutierrez, Flavio L. Souza, and Oomman K. Varghese<br/><br/>1.1 Introduction 1<br/><br/>1.2 The Nexus Between Fossil Fuels, Global Warming, and Climate Change 2<br/><br/>1.3 The Energy System Transformation 4<br/><br/>1.4 Solar Fuels 5<br/><br/>1.5 Solar Reduction of CO 2 forFuelProduction 6<br/><br/>1.6 Solar Water Splitting for H 2 Generation 7<br/><br/>1.7 Solar to Fuel Conversion Pathways 8<br/><br/>1.7.1 Bioconversion 8<br/><br/>1.7.2 Thermoconversion 9<br/><br/>1.7.3 Electroconversion 10<br/><br/>1.7.4 Photoconversion 12<br/><br/>1.8 Conclusion 13<br/><br/>References 13<br/><br/>Section 1 Solar Fuel Generation Processes: Science and Technology 19<br/><br/>2 Introduction to Photocatalytic/Photoelectrochemical Fuel Generation: Science and Technology Perspective 21<br/>Ke Fan, Lei Wang, and Lianpeng Tong<br/><br/>2.1 Introduction 21<br/><br/>2.2 The Natural Photosynthetic Water Splitting and CO 2 Reduction 22<br/><br/>2.2.1 Oxygen-Evolving Complex (OEC) 22<br/><br/>2.2.2 Hydrogenase 23<br/><br/>2.2.3 Enzymes that Reduce CO 2 24<br/><br/>2.3 Artificial Systems for Solar-Driven Chemical Fuels Production 25<br/><br/>2.3.1 Bioinspired Synthetic Systems 25<br/><br/>2.3.1.1 Synthetic Molecular Catalysts 25<br/><br/>2.3.1.2 Application of Synthetic Model Compounds in PEC Cells 26<br/><br/>2.3.2 Bioinorganic Hybrid Systems 26<br/><br/>2.3.3 Photoelectrochemical Water Splitting and CO 2 Reduction 27<br/><br/>2.3.3.1 Some Basic Concepts of Semiconductors 27<br/><br/>2.3.3.2 Photoelectrochemical (PEC) Water Splitting 29<br/><br/>2.3.3.3 Configurations of PEC Cell for Water Splitting 33<br/><br/>2.3.3.4 A Few Semiconductors Extensively Studied for Water Splitting 34<br/><br/>2.3.3.5 Photoelectrochemical (PEC) CO 2 reduction 35<br/><br/>2.3.3.6 Particulate Photocatalytic Systems for Water Splitting/CO 2 Reduction 37<br/><br/>2.4 Challenges and Outlook 39<br/><br/>References 40<br/><br/>3 Solar Thermochemical Fuels 47<br/>Christoph Falter<br/><br/>Nomenclature 47<br/><br/>3.1 Thermodynamics 48<br/><br/>3.2 Solar Thermochemical Processes and Reactor Concepts 49<br/><br/>3.2.1 Thermolysis of H 2 O 49<br/><br/>3.2.2 H 2 /CO From H 2 O/CO 2 Using Thermochemical Cycles 50<br/><br/>3.3 Energy and Mass Balance 54<br/><br/>3.3.1 Thermochemical Reactor 54<br/><br/>3.3.2 Energy and Mass Balance of Solar Thermochemical Fuel Plant 55<br/><br/>3.3.3 Possibilities of Enhancing Plant Efficiency 57<br/><br/>3.4 Techno-Economic Analysis 58<br/><br/>3.4.1 System Description 59<br/><br/>3.4.2 Economic Model 59<br/><br/>3.4.3 Production Costs 60<br/><br/>3.4.4 Comparison with Other Alternative Fuel Pathways 62<br/><br/>3.5 Life-Cycle Analysis 63<br/><br/>3.5.1 Goal and Scope 63<br/><br/>3.5.2 Inventory Analysis 64<br/><br/>3.5.3 Impact Assessment 64<br/><br/>3.5.4 Interpretation 65<br/><br/>3.5.4.1 Scenario Analysis–CO 2 From Natural Gas Combustion 65<br/><br/>3.5.4.2 Scenario Analysis–Grid Electricity 65<br/><br/>3.5.4.3 Comparison with Published GWP Values of Other Fuel Pathways 66<br/><br/>3.6 Land and Water Demand 67<br/><br/>3.6.1 Water Footprint 67<br/><br/>3.6.2 Land Demand 69<br/><br/>3.7 Geographical Potential 71<br/><br/>3.7.1 Determination of Suitable Areas for Solar Thermochemical Fuel Production 71<br/><br/>3.7.2 Determination of Life-Cycle Production Costs 73<br/><br/>3.7.3 Production Cost 74<br/><br/>3.8 Conclusions 76<br/><br/>References 77<br/><br/>4 Principles, Operations, and Techno-Economics of Photovoltaic-Electrolysis and Photoelectrochemical Water Splitting Processes 83<br/>Nicolas Gaillard<br/><br/>4.1 Introduction 83<br/><br/>4.2 The Solar-to-Hydrogen Conversion Process 85<br/><br/>4.2.1 Fundamental Concepts 85<br/><br/>4.2.2 Material and Device Considerations 86<br/><br/>4.3 PV-Electrolysis Water Splitting 88<br/><br/>4.3.1 The Photovoltaic Process 88<br/><br/>4.3.2 Fundamentals of Water Electrolysis 91<br/><br/>4.3.3 PV-E Operating Principles 93<br/><br/>4.3.4 Evolution of PV-E Systems and Current State-of-the-Art 94<br/><br/>4.3.4.1 PV-E Systems with Planar Photovoltaics 94<br/><br/>4.3.4.2 PV-E Systems with Concentrated Photovoltaics 96<br/><br/>4.4 Photoelectrochemical Water Splitting 97<br/><br/>4.4.1 Energetics of the Semiconductor/Liquid Junction 97<br/><br/>4.4.2 Charge Transfer Dynamics at the Semiconductor/Liquid Junction 99<br/><br/>4.4.3 Current–Potential Behavior of a Photoelectrode 100<br/><br/>4.4.4 Spontaneous Water Splitting with Multi-Junction PEC Devices 103<br/><br/>4.5 Techno-Economics of PV-E and PEC Water Splitting 107<br/><br/>4.5.1 Similarities and Differences Between PV-E and PEC Water Splitting Technologies 107<br/><br/>4.5.2 Independent Assessments of PEC Technologies 108<br/><br/>4.5.3 Independent Assessments of PV-E Technology 110<br/><br/>4.5.4 Comparative Assessments of PV-E and PEC Technologies 110<br/><br/>4.6 Conclusion and Outlook 111<br/><br/>Acknowledgments 112<br/><br/>References 113<br/><br/>5 A Brief History of Molecular Photosynthesis: The Quest for the Bridge Between Light and Chemistry 119<br/>Liniquer A. Fontana, Vitor H. Rigolin, Catia Ornelas, and Jackson D. Megiatto Jr.<br/><br/>5.1 Introduction 119<br/><br/>5.2 Historical Context and Early Findings 119<br/><br/>5.3 The Beginning of the Modern Understanding of Photosynthesis 121<br/><br/>5.4 Molecular Photosynthesis: Human Ingenuity Enters the Game 123<br/><br/>5.4.1 Biomimetic Reaction Centers 123<br/><br/>5.4.2 Artificial Reaction Centers with Nonnatural Electron Donors and Acceptors 126<br/><br/>5.4.3 Supramolecular Assembly of Artificial Reaction Centers 128<br/><br/>5.4.4 Artificial Antenna 131<br/><br/>5.4.5 Photo-Regulation 132<br/><br/>5.4.6 Artificial Reaction Centers Thermodynamically Poised to Oxidize Water 134<br/><br/>5.5 Harvesting the Energy of Charge-Separated States for Solar Fuel Production 137<br/><br/>5.5.1 Solar-Sensitized Photoelectrochemical Cells 137<br/><br/>5.5.2 Artificial Leaf 138<br/><br/>5.6 Conclusions 139<br/><br/>References 139<br/><br/>6 The Competitive Kinetics of Solar-Driven CO 2 Reduction 143<br/>Mark T. Spitler<br/><br/>6.1 Introduction 143<br/><br/>6.2 Photosynthetic Systems 144<br/><br/>6.2.1 General 144<br/><br/>6.2.2 PSII Coupling to the OEC 146<br/><br/>6.2.3 PSI Coupling to PSII and RuBisCO 148<br/><br/>6.2.4 LHC Coupling 149<br/><br/>6.2.5 Indirect Coupling to RuBisCo 149<br/><br/>6.2.6 Photostability 150<br/><br/>6.3 Water Oxidation 151<br/><br/>6.3.1 Molecular Water Oxidation 152<br/><br/>6.3.2 Dye-Sensitized Photoelectrosynthesis Cell (DSPEC) 154<br/><br/>6.3.3 Photoelectrochemical (PEC) Water Splitting 158<br/><br/>6.3.4 Particles 160<br/><br/>6.4 CO 2 Reduction 163<br/><br/>6.4.1 Recycling Applications 163<br/><br/>6.4.2 Metals as Catalysts 164<br/><br/>6.4.3 PV-Driven CO 2 Reduction 166<br/><br/>6.4.4 Solar Fuel Harvesting 167<br/><br/>6.4.5 Semiconductor Photoanode-Driven Reduction of CO 2 at Metals 167<br/><br/>6.4.6 Semiconductor Electrodes 167<br/><br/>6.4.7 Reduction of CO 2 at Semiconductor Surfaces 169<br/><br/>6.4.8 Molecular Catalysts 171<br/><br/>6.4.9 Particles for CO 2 Reduction 172<br/><br/>6.5 Conclusions 174<br/><br/>References 175<br/><br/>7 Utilizing the Band Diagram Framework to Interpret the Operation of Photoelectrochemical Cells 183<br/>Kirk H. Bevan, Botong Miao, and Asif Iqbal<br/><br/>7.1 Semiconductor Concepts 183<br/><br/>7.2 Semiconductor–Liquid Junctions in the Dark 186<br/><br/>7.2.1 Charge Equilibration in the Dark 187<br/><br/>7.2.2 Semiconductor–Liquid Junctions Under Bias in the Dark 188<br/><br/>7.2.3 Biasing with Respect to Reference Electrodes 190<br/><br/>7.3 Illuminated Semiconductor–Liquid Junctions 190<br/><br/>7.3.1 Gartner’s Model 190<br/><br/>7.3.2 Peter’s Model 193<br/><br/>7.4 The Role of Numerical Modeling 194<br/><br/>7.4.1 Semiclassical Approach 194<br/><br/>7.4.2 Insights from Semiclassical Modeling 197<br/><br/>7.5 Outlook 200<br/><br/>References 200<br/><br/>Section 2 Materials for Solar Fuel Generation 203<br/><br/>8 Materials Used for Solar Thermal/Thermochemical Processes for CO 2 /H 2 O Dissociation/Conversion 205<br/>Heng Pan, Youjun Lu, and Bingchan Hu<br/><br/>8.1 Introduction 205<br/><br/>8.2 Solar Thermolysis of H 2 OorCO 2 205<br/><br/>8.3 Redox Pairs for Two-Step Thermochemical Cycles 206<br/><br/>8.3.1 Volatile Redox Pairs 207<br/><br/>8.3.1.1 ZnO/Zn Pair 207<br/><br/>8.3.1.2 SnO 2 /SnO Pair 209<br/><br/>8.3.2 Nonvolatile Redox Pairs 209<br/><br/>8.3.2.1 Fe 3 O 4 /FeO Pair 209<br/><br/>8.3.2.2 CeO 2 /CeO 2−δ Pairs 210<br/><br/>8.3.2.3 CoFe 2 O 4 /FeAl 2 O 4 Pairs 211<br/><br/>8.3.2.4 Perovskites 211<br/><br/>8.3.3 Redox Pairs: New Discoveries 212<br/><br/>8.4 Materials for Sulfur–Iodine (S–I) Cycle 213<br/><br/>8.4.1 Corrosion-Resistant Materials 214<br/><br/>8.4.2 The Catalysts of HI Decomposition 214<br/><br/>8.4.3 The Catalysts for H 2 SO 4 Decomposition 217<br/><br/>8.5 Other Multi-Step Thermochemical Cycles 218<br/><br/>8.6 Catalysts for Solar Gasification and Reforming 220<br/><br/>8.6.1 Catalysts for Solar Gasification 220<br/><br/>8.6.2 Catalysts for Solar Reforming of Methane 220<br/><br/>8.6.3 Catalysts for Solar Reforming of Methanol 221<br/><br/>8.7 Summary and Outlook 222<br/><br/>Acknowledgment 222<br/><br/>Conflict of Interest 222<br/><br/>References 222<br/><br/>9 Electrocatalytic Reduction of CO 2 to Value-Added Chemicals and Fuels 233<br/>Qian Sun, Kamran Dastafkan, and Chuan Zhao<br/><br/>9.1 Introduction 233<br/><br/>9.2 Fundamentals of CO 2 Electroreduction (CO 2 RR) 235<br/><br/>9.2.1 Reaction Mechanism of CO 2 RR 235<br/><br/>9.2.2 Electrochemical Cells 237<br/><br/>9.2.2.1 H-Cell 237<br/><br/>9.2.2.2 Flow Cell 240<br/><br/>9.2.2.3 Mea 241<br/><br/>9.2.2.4 High-Temperature Molten Salt Cell 242<br/><br/>9.2.2.5 Solid Oxide Cell 242<br/><br/>9.2.3 Electrolytes 243<br/><br/>9.3 Electrocatalysts for CO 2 RR 244<br/><br/>9.3.1 Metals 245<br/><br/>9.3.1.1 Noble Metals 245<br/><br/>9.3.1.2 Transition Metals 247<br/><br/>9.3.1.3 Oxide-Derived Metals 248<br/><br/>9.3.1.4 Metal Alloys 248<br/><br/>9.3.2 Metal Compounds 250<br/><br/>9.3.2.1 Metal Chalcogenides 250<br/><br/>9.3.2.2 Metal Oxides 252<br/><br/>9.3.2.3 Metal Nitrides 253<br/><br/>9.3.2.4 Metal Hydroxides 254<br/><br/>9.3.3 Single-Atom Catalysts 254<br/><br/>9.3.3.1 Noble Metal SACs 254<br/><br/>9.3.3.2 Transition Metal SACs 255<br/><br/>9.3.3.3 Other Metal SACs 256<br/><br/>9.3.4 Molecular Catalysts 257<br/><br/>9.3.4.1 Organometallic Complexes 257<br/><br/>9.3.4.2 MOF and COF Catalysts 258<br/><br/>9.3.4.3 Metal-Free and Polymerized Catalysts 259<br/><br/>9.4 In Situ Characterizations of Electrocatalysts for CO 2 RR 260<br/><br/>9.4.1 In Situ Raman 260<br/><br/>9.4.2 In Situ UV–vis Spectroscopy 262<br/><br/>9.4.3 In Situ FTIR Spectroscopy 262<br/><br/>9.4.4 Operando XAS 263<br/><br/>9.5 Summary and Perspectives 264<br/><br/>9.5.1 Challenges for CO 2 RR 265<br/><br/>9.5.2 Comparison with HER 265<br/><br/>9.5.3 Perspectives for CO 2 RR 265<br/><br/>References 269<br/><br/>10 Ceramic Materials for Photocatalytic/Photoelectrochemical Fuel Generation 285<br/>Appu V. Raghu and Takashi Tachikawa<br/><br/>10.1 Introduction 285<br/><br/>10.2 Photocatalytic/Photoelectrochemical Fuel Generation 285<br/><br/>10.2.1 Photon Absorption 288<br/><br/>10.2.2 Requirements of Materials Useful as Photocatalysts 289<br/><br/>10.3 Metal Oxides as Photocatalysts 290<br/><br/>10.3.1 Doping and Surface Treatments 291<br/><br/>10.3.2 Long-Term Stability 292<br/><br/>10.3.3 Heterostructures 292<br/><br/>10.4 Other Ceramic Materials 295<br/><br/>10.4.1 Nitrides 295<br/><br/>10.4.2 Oxynitrides 296<br/><br/>10.4.3 Carbides 296<br/><br/>10.4.4 MXenes 297<br/><br/>10.5 Challenges 301<br/><br/>10.6 Conclusion 301<br/><br/>References 301<br/><br/>11 Gallium Nitride-Based Artificial Photosynthesis Integrated Devices for Solar Hydrogen Generation and Carbon Dioxide Reduction 309<br/>Baowen Zhou, Peng Zhou, Wanjae Dong, and Zetian mi<br/><br/>11.1 Introduction 309<br/><br/>11.2 Merits of III-Nitride Nanostructures for Artificial Photosynthesis 310<br/><br/>11.3 Recent Advances in III-Nitrides for Artificial Photosynthesis 311<br/><br/>11.3.1 Solar Water Splitting 311<br/><br/>11.3.1.1 Photoelectrochemical Water Splitting 312<br/><br/>11.3.1.2 Photocatalytic Overall Water Splitting 316<br/><br/>11.3.2 Long-Term Stability Studies 322<br/><br/>11.4 GaN-Based APID for CO 2 Reduction 324<br/><br/>11.4.1 Photochemical CO 2 RR Toward CH 4 Production 324<br/><br/>11.4.2 Photochemical CO 2 RR Reduction Toward CH 3 OH Production 325<br/><br/>11.4.3 Photoelectrochemical CO 2 Reduction 326<br/><br/>11.4.3.1 Photoelectrochemical CO 2 RR Toward CO/H 2 Production 326<br/><br/>11.4.3.2 Photoelectrochemical CO 2 RR Toward HCOOH Production 327<br/><br/>11.4.3.3 Photoelectrochemical CO 2 RR Toward CH 4 Production 329<br/><br/>11.5 Gallium Nitride-Catalyzed Organic Transformations and N 2 Fixation 330<br/><br/>11.6 Summary and Prospects 332<br/><br/>Acknowledgment 333<br/><br/>Conflict of Interest 333<br/><br/>Additional Note 333<br/><br/>References 333<br/><br/>12 Low-Dimensional Materials for Direct Fuel Generation Assisted by Sunlight 341<br/>Muhammad Shuaib Khan and Shaohua Shen<br/><br/>12.1 Introduction 341<br/><br/>12.2 Unique Properties of Low-Dimensional Materials 344<br/><br/>12.2.1 Electronic Properties 344<br/><br/>12.2.2 Surface Plasmon Resonance 344<br/><br/>12.2.2.1 Charge Transfer Mechanism 345<br/><br/>12.2.2.2 Local Electric Field 346<br/><br/>12.2.3 Crystal Facets, Kinks, and Edges 346<br/><br/>12.2.4 Large Surface Area and Abundant Surface-Active Sites 347<br/><br/>12.2.5 Heterostructure Construction 347<br/><br/>12.3 Applications of Low-Dimensional Materials 348<br/><br/>12.3.1 Water Splitting 348<br/><br/>12.3.1.1 0D Materials 350<br/><br/>12.3.1.2 1D Materials 352<br/><br/>12.3.1.3 2D Materials 354<br/><br/>12.3.1.4 Low-Dimensional Heterostructures 355<br/><br/>12.3.2 CO 2 Reduction 359<br/><br/>12.3.2.1 0D Materials 359<br/><br/>12.3.2.2 1D Materials 361<br/><br/>12.3.2.3 2D Materials 363<br/><br/>12.3.2.4 Low-Dimensional Heterostructures 365<br/><br/>12.4 Summary and Future Perspective 368<br/><br/>Acknowledgments 368<br/><br/>References 368<br/><br/>Index 377 |
520 ## - SUMMARY, ETC. | |
Summary, etc | Conversion of Water and CO2 to Fuels using Solar Energy Comprehensive Resource for Understanding the Emerging Solar Technologies for Hydrogen Generation via Water Splitting and Carbon-based Fuel Production via CO2 Recycling Fossil fuel burning is the primary source of carbon in the atmosphere. The realization that such burning can harm the life on our planet, has led to a surge in research activities that focus on the development of alternative strategies for energy conversion. Fuel generation using solar energy is one of the most promising approaches that has received widespread attention. The fuels produced using sunlight are commonly referred to as "solar fuels." This book provides researchers interested in solar fuel generation a comprehensive understanding of the emerging solar technologies for hydrogen generation via water splitting and carbon-based fuel production via CO2 recycling. The book presents the fundamental science, technologies, techno-economic analysis, and most importantly, the materials that are being explored to establish artificial methods of fuel production using solar energy. For the rapid advancement of the field, it is necessary for researchers, particularly for those who are new to the field, to have clear knowledge of various materials studied so far and their performance. For this reason, almost half of the book is dedicated to the discussions on materials and properties. Key topics discussed in the book include: Photocatalytic/photoelectrochemical processes that use semiconductor photocatalysts, including both ceramic and non-ceramic materials Photovoltaic assisted electrochemical processes Solar thermochemical processes Molecular photosynthesis Researchers and professionals in the fields of energy and materials and closely related science and engineering disciplines could use this book to acquire clear insights on both mainstream solar fuel technologies and those in the developmental stages. |
545 1# - BIOGRAPHICAL OR HISTORICAL DATA | |
Biographical or historical note | Oomman K. Varghese, PhD, is an Associate Professor in the Department of Physics, Researcher at Texas Center for Superconductivity and Leader of Nanomaterials and Devices Laboratory at the University of Houston. In 2011, Thomson Reuters ranked him 9th among “World’s Top 100 Materials Scientists” in the previous decade.<br/><br/>Flavio L. Souza, PhD, is the Lead Researcher and Coordinator of Green Hydrogen Program of Brazilian Center for Research in Energy and Materials (CNPEM), Associate Professor at Federal University of ABC and an accredited researcher by CNPq (The Brazilian Research Council). He received an Academic Excellence award (2017) from Federal University of ABC for his achievements in research and dedication to higher education. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Solar energy. |
Authority record control number | https://id.loc.gov/authorities/subjects/sh85124500. |
655 #4 - INDEX TERM--GENRE/FORM | |
Genre/form data or focus term | Electronic books. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Varghese, Oomman K., |
Authority record control number | https://id.loc.gov/authorities/names/nb2008003362 |
Relator term | editor. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Souza, Flavio L., |
Relator term | editor. |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | https://onlinelibrary.wiley.com/doi/book/10.1002/9781119600862 |
Link text | Full text available at Wiley Online Library Click here to view. |
942 ## - ADDED ENTRY ELEMENTS | |
Source of classification or shelving scheme | |
Item type | EBOOK |
No items available.