Interfacial engineering in functional materials for dye-sensitized solar cells / (Record no. 89308)

000 -LEADER
fixed length control field 13438cam a2200469 i 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20241230165211.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m o d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr |||||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 241230b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119557333
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119557402
Qualifying information electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119557388
Qualifying information adobe electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119557401
Qualifying information electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9781119557333
Qualifying information hardcover
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9781119557395
Qualifying information electronic publication
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1127227560
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
042 ## - AUTHENTICATION CODE
Authentication code pcc
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TK2963.D94
Item number I68 2020
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.31/244
Edition number 23
245 00 - TITLE STATEMENT
Title Interfacial engineering in functional materials for dye-sensitized solar cells /
Statement of responsibility, etc edited by Alagarsamy Pandikumar, Kandasamy Jothivenkatachalam, Karuppanapillai B. Bhojanaa.
250 ## - EDITION STATEMENT
Edition statement First edition.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, NJ, USA :
Name of publisher, distributor, etc Wiley,
Date of publication, distribution, etc 2020.
264 #4 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Date of publication, distribution, etc 2020.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (xvi, 270 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent.
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia.
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note Table of Contents<br/>List of Contributors xi<br/><br/>Preface xv<br/><br/>1 Dye-Sensitized Solar Cells: History, Components, Configuration, and Working Principle 1<br/>S.N. Karthick, K.V. Hemalatha, Suresh Kannan Balasingam, F. Manik Clinton, S. Akshaya, and Hee-Je Kim<br/><br/>1.1 Introduction 1<br/><br/>1.2 History of Dye-sensitized Solar Cells 3<br/><br/>1.3 Components of DSSCs 4<br/><br/>1.3.1 Conductive Glass Substrate 4<br/><br/>1.3.2 Photoanode 4<br/><br/>1.3.3 Counter Electrode 4<br/><br/>1.3.4 Electrolytes 6<br/><br/>1.3.4.1 Types of Solvents Used in Electrolytes 6<br/><br/>1.3.4.2 Alternative Redox Mediators 7<br/><br/>1.3.5 Dyes 8<br/><br/>1.4 Configuration of DSSCs 8<br/><br/>1.4.1 Metal Substrates for Photoanode and Glass/TCO for Counter Electrode 8<br/><br/>1.4.2 Metal Substrates for Counter Electrode and Glass/TCO for Photoanode 10<br/><br/>1.4.3 Metal Substrate for Photoanode and Polymer Substrate for Counter Electrode 10<br/><br/>1.4.4 Polymer Substrates for Flexible DSSCs 10<br/><br/>1.4.5 Glass/TCO-Free Metal Substrates for Flexible DSSCs 11<br/><br/>1.4.6 Glass/TCO-Free Metal Wire Substrates for Flexible DSSCs 11<br/><br/>1.5 Working Principle of DSSCs 11<br/><br/>1.5.1 Electron Transfer Mechanism in DSSCs 14<br/><br/>1.5.2 Photoelectric Performance 14<br/><br/>Acknowledgments 15<br/><br/>References 15<br/><br/>2 Function of Photoanode: Charge Transfer Dynamics, Challenges, and Alternative Strategies 17<br/>A. Dennyson Savariraj and R.V. Mangalaraja<br/><br/>2.1 Introduction 17<br/><br/>2.2 The General Composition of DSSC 18<br/><br/>2.3 Selection of Substrate for DSSCs 18<br/><br/>2.4 Photoanode 19<br/><br/>2.4.1 Coating Procedure 20<br/><br/>2.4.2 Significance of Using Mesoporous Structure 20<br/><br/>2.5 Sensitizer 20<br/><br/>2.6 Charge Transfer Mechanism 21<br/><br/>2.7 Interfaces 21<br/><br/>2.8 Significance of Dye/Metal Oxide Interface 22<br/><br/>2.9 Factors That Influence Efficiency in DSSC 23<br/><br/>2.9.1 Dye Aggregation 23<br/><br/>2.9.2 Effect of Metal Oxide on the Performance of Metal Oxide/Dye Interface 24<br/><br/>2.9.3 Role of Electronic Structure of Metal Oxides 25<br/><br/>2.10 Kinetics of Operation in DSSCs 26<br/><br/>2.11 Strategies to Improve the Photoanode Performance 28<br/><br/>2.11.1 TiCl4 Treatment 28<br/><br/>2.11.2 Composites 28<br/><br/>2.11.3 Light Scattering 29<br/><br/>2.11.4 Nanoarchitectures 29<br/><br/>2.11.5 Doping 30<br/><br/>2.11.6 Interfacial Engineering 30<br/><br/>2.12 Conclusion 30<br/><br/>Acknowledgments 31<br/><br/>References 31<br/><br/>3 Nanoarchitectures as Photoanodes 35<br/>Hari Murthy<br/><br/>3.1 Introduction 35<br/><br/>3.2 DSSC Operation 36<br/><br/>3.3 Nanoarchitectures for Improved Device Performance of Photoanodes 39<br/><br/>3.3.1 TiO2 39<br/><br/>3.3.2 ZnO 51<br/><br/>3.3.3 SnO2 53<br/><br/>3.3.4 Nb2O5 55<br/><br/>3.3.5 Graphene 55<br/><br/>3.3.6 Other Photoanode Materials 56<br/><br/>3.4 Future Outlook and Challenges 65<br/><br/>3.5 Conclusion 66<br/><br/>References 66<br/><br/>4 Light Scattering Materials as Photoanodes 79<br/>Rajkumar C and A. Arulraj<br/><br/>4.1 Introduction 79<br/><br/>4.2 Introduction to Light Scattering 79<br/><br/>4.3 Materials for Light Scattering in DSSCs 80<br/><br/>4.4 Early Theoretical Predictions of Light Scattering in DSSCs 82<br/><br/>4.5 Different Light Scattering Materials 85<br/><br/>4.5.1 Mixing of Large Particles into Small Particles 85<br/><br/>4.5.2 Voids as Light Scatters 87<br/><br/>4.5.3 Nano-Composites for Light Scattering 87<br/><br/>4.5.3.1 Nanowire–Nanoparticle Composite 87<br/><br/>4.5.3.2 Nanofiber–Nanoparticle Composite 87<br/><br/>4.5.3.3 SrTiO3 Nanocubes–ZnO Nanoparticle Composite 88<br/><br/>4.5.3.4 Silica Nanosphere–ZnO Nanoparticle Composite 88<br/><br/>4.5.3.5 SnO2 Aggregate–SnO2 Nanosheet Composite 88<br/><br/>4.5.3.6 Ag (4,4′-Dicyanamidobiphenyl) Complex–TiO2 NP Composite 88<br/><br/>4.6 Light Scattering Layers 88<br/><br/>4.6.1 Surface Modified TiO2 Particles in Scattering Layer 88<br/><br/>4.6.2 Dual Functional Materials in DSSC 89<br/><br/>4.6.3 Double-Light Scattering Layer 89<br/><br/>4.6.4 Large Particles as Scattering Layers 89<br/><br/>4.6.4.1 TiO2 Nanotubes 90<br/><br/>4.6.4.2 TiO2 Nanowires 90<br/><br/>4.6.4.3 TiO2 Nanospindles 90<br/><br/>4.6.4.4 TiO2 Nanofibers 90<br/><br/>4.6.4.5 TiO2 Rice Grain Nanostructures 90<br/><br/>4.6.4.6 Nest-Shaped TiO2 Structures 91<br/><br/>4.6.4.7 Nano-Embossed Hollow Spherical TiO2 91<br/><br/>4.6.4.8 Hexagonal TiO2 Plates 91<br/><br/>4.6.4.9 TiO2 Photonic Crystals 91<br/><br/>4.6.4.10 Cubic CeO2 Nanoparticles 94<br/><br/>4.6.4.11 Spherical TiO2 Aggregates 94<br/><br/>4.6.4.12 Hierarchical TiO2 Submicroflowers 94<br/><br/>4.6.4.13 SnO2 Aggregates 94<br/><br/>4.6.4.14 ZnO Nanoflowers 95<br/><br/>4.6.5 Core–Shell Nanoparticles for Light Scattering in DSSCs 95<br/><br/>4.6.6 Double-Layer Photoanode 95<br/><br/>4.6.6.1 TiO2 Aggregates 96<br/><br/>4.6.6.2 Morphology-Controlled 1D–3D Bilayer TiO2 Nanostructures 96<br/><br/>4.6.6.3 Quintuple-Shelled SnO2 Hollow Microspheres 96<br/><br/>4.6.6.4 Carbon-Based Materials for Light Scattering 96<br/><br/>4.6.6.5 3D N-Doped TiO2 Microspheres Used as Scattering Layers 96<br/><br/>4.6.6.6 ZnO Hollow Spheres and Urchin-like TiO2 Microspheres 96<br/><br/>4.6.6.7 SnO2 as Light-Scattering Layer 97<br/><br/>4.6.7 Three-Layer Photoanode 97<br/><br/>4.6.8 Four-Layer Photoanode 97<br/><br/>4.6.9 Surface Plasmon Effect in DSSC 97<br/><br/>4.7 Conclusion 99<br/><br/>References 99<br/><br/>5 Function of Compact (Blocking) Layer in Photoanode 107<br/>Su Pei Lim<br/><br/>5.1 Introduction 107<br/><br/>5.2 Titanium Dioxide (TiO2) and Titanium (Ti)-Based Material as a Compact Layer 107<br/><br/>5.3 Zinc Oxide (ZnO) as a Compact Layer 112<br/><br/>5.4 Less Common Metal Oxide as a Compact Layer 117<br/><br/>5.5 Conclusion 118<br/><br/>References 121<br/><br/>6 Function of TiCl4 Posttreatment in Photoanode 125<br/>T.S. Senthil and C.R. Kalaiselvi<br/><br/>6.1 Introduction 125<br/><br/>6.2 Role of TiCl4 Posttreatment in Photo-Anode 126<br/><br/>6.3 Effect of Posttreatment of TiCl4 on Various Perspectives 126<br/><br/>6.3.1 TiO2 Morphology, Porosity, and Surface Area 126<br/><br/>6.3.2 Dye Adsorption and Photocurrent Generation 129<br/><br/>6.3.3 Electron Transport and Diffusion Coefficient 132<br/><br/>6.3.4 Recombination Losses at Short Circuit 134<br/><br/>6.3.5 Concentration and Dipping Time of TiCl4 135<br/><br/>6.4 Conclusion 136<br/><br/>References 137<br/><br/>7 Doped Semiconductor as Photoanode 139<br/>K. S. Rajni and T. Raguram<br/><br/>7.1 Introduction 139<br/><br/>7.2 Photoanode 140<br/><br/>7.3 Characterization 141<br/><br/>7.4 Doped TiO2 Photoanodes 141<br/><br/>7.4.1 Alkali Earth Metals-doped TiO2 141<br/><br/>7.4.1.1 Lithium-doped TiO2 141<br/><br/>7.4.1.2 Magnesium-doped TiO2 143<br/><br/>7.4.1.3 Calcium-doped TiO2 143<br/><br/>7.4.2 Metalloids-doped TiO2 143<br/><br/>7.4.2.1 Boron-doped TiO2 145<br/><br/>7.4.2.2 Silicon-doped TiO2 145<br/><br/>7.4.2.3 Germanium-doped TiO2 145<br/><br/>7.4.2.4 Antimony-doped TiO2 146<br/><br/>7.4.3 Nonmetals-doped TiO2 146<br/><br/>7.4.3.1 Carbon-doped TiO2 146<br/><br/>7.4.3.2 Nitrogen-doped TiO2 147<br/><br/>7.4.3.3 Fluorine-doped TiO2 147<br/><br/>7.4.3.4 Sulfur-doped TiO2 147<br/><br/>7.4.3.5 Iodine-doped TiO2 148<br/><br/>7.4.4 Transition Metals-doped TiO2 148<br/><br/>7.4.4.1 Scandium-doped TiO2 148<br/><br/>7.4.4.2 Vanadium, Niobium, and Tantalum-doped TiO2 148<br/><br/>7.4.4.3 Chromium-doped TiO2 148<br/><br/>7.4.4.4 Manganese and Cobalt-doped TiO2 150<br/><br/>7.4.4.5 Iron-doped TiO2 150<br/><br/>7.4.4.6 Nickel-doped TiO2 151<br/><br/>7.4.4.7 Copper-doped TiO2 152<br/><br/>7.4.4.8 Zinc-doped TiO2 153<br/><br/>7.4.4.9 Yttrium-doped TiO2 153<br/><br/>7.4.4.10 Zirconium-doped TiO2 154<br/><br/>7.4.4.11 Molybdenum-doped TiO2 154<br/><br/>7.4.4.12 Silver-doped TiO2 155<br/><br/>7.4.5 Post-Transition Metals 155<br/><br/>7.4.5.1 Aluminum-doped TiO2 155<br/><br/>7.4.5.2 Gallium-doped TiO2 155<br/><br/>7.4.5.3 Indium-doped TiO2 155<br/><br/>7.4.5.4 Tin-doped TiO2 156<br/><br/>7.4.6 Lanthanides-doped TiO2 156<br/><br/>7.4.6.1 Lanthanum-doped TiO2 156<br/><br/>7.4.6.2 Cerium-doped TiO2 156<br/><br/>7.4.6.3 Neodymium-doped TiO2 157<br/><br/>7.4.6.4 Samarium-doped TiO2 157<br/><br/>7.4.6.5 Europium-doped TiO2 157<br/><br/>7.4.7 Co-doped TiO2 158<br/><br/>7.4.8 Tri-doped TiO2 158<br/><br/>7.5 Conclusion 158<br/><br/>References 159<br/><br/>8 Binary Semiconductor Metal Oxide as Photoanodes 163<br/>S.S. Kanmani, I. John Peter, A. Muthu Kumar, P. Nithiananthi, C. Raja Mohan, and K. Ramachandran<br/><br/>8.1 Why Metal Oxide Semiconductors? 163<br/><br/>8.2 Development of MOS-Based DSSC 164<br/><br/>8.2.1 TiO2/ZnO Core/Shell Configuration 165<br/><br/>8.2.2 Preparation of TiO2/ZnO Core/Shell Nanomaterials 165<br/><br/>8.2.3 TiO2/ZnO Core/Shell Nanomaterials 165<br/><br/>8.2.4 DSSC Performance of TiO2/ZnO Core/Shell Configuration 167<br/><br/>8.3 Importance of Heterostructures 170<br/><br/>8.4 I–V Characteristics 171<br/><br/>8.5 Matching of Bandgaps 171<br/><br/>8.6 Conclusion 189<br/><br/>References 189<br/><br/>9 Plasmonic Nanocomposite as Photoanode 193<br/>Su Pei Lim<br/><br/>9.1 Introduction 193<br/><br/>9.2 Plasmonic Nanocomposite Modified TiO2 as Photoanode 193<br/><br/>9.3 Plasmonic Nanocomposite Modified ZnO as Photoanode 197<br/><br/>9.4 Plasmonic Nanocomposite Modified with Less Common Metal Oxide as Photoanode 203<br/><br/>9.5 Conclusion 206<br/><br/>References 206<br/><br/>10 Carbon Nanotubes-Based Nanocomposite as Photoanode 213<br/>Giovana R. Cagnani, Nirav Joshi, and Flavio M. Shimizu<br/><br/>10.1 Introduction 213<br/><br/>10.2 Recent Advances on DSSC Photoanodes 215<br/><br/>10.3 Structure and Properties of Carbon Nanotubes 216<br/><br/>10.4 CNT-Based Photoanode Material 218<br/><br/>10.5 Effect of the Morphology and Interface of the CNT Photoanodes on the Efficiency of the DSSC 221<br/><br/>10.6 Summary and Future Prospect 223<br/><br/>Acknowledgment 223<br/><br/>References 223<br/><br/>11 Graphene-Based Nanocomposite as Photoanode 231<br/>Subhendu K. Panda, G. Murugadoss, and R. Thangamuthu<br/><br/>11.1 Introduction 231<br/><br/>11.2 Graphene–TiO2 Nanocomposite for Photoanode 232<br/><br/>11.3 Conclusion and Remarks 241<br/><br/>References 242<br/><br/>12 Graphitic Carbon Nitride Based Nanocomposites as Photoanodes 247<br/>T.S. Shyju, S. Anandhi, P. Vengatesh, C. Karthik Kumar, and M. Paulraj<br/><br/>12.1 Introduction 247<br/><br/>12.2 Importance of Graphitic Carbon Nitride 248<br/><br/>12.3 Photoanodes for DSSC 250<br/><br/>12.4 Preparation of Graphitic Carbon Nitride 252<br/><br/>12.4.1 Bulk Graphitic Carbon Nitride 253<br/><br/>12.4.2 Mesoporous Graphitic Carbon Nitrides 253<br/><br/>12.4.3 Doping in Graphitic Carbon Nitride 254<br/><br/>12.4.4 Ag Deposited g-C3N4 254<br/><br/>12.4.5 Chemical Doping 254<br/><br/>12.5 Operation Principles of DSSC 255<br/><br/>12.5.1 Nanostructured Graphitic Carbon Nitride in DSSC 257<br/><br/>12.6 Graphitic Carbon Nitride in Polymer Films Solar Cell 259<br/><br/>12.7 Preparation of Carbon Nitride Counter Electrode 259<br/><br/>12.8 Quantum Dot Graphitic Carbon Nitride 260<br/><br/>12.9 Porous Graphitic Carbon Nitride 260<br/><br/>12.10 Summary 260<br/><br/>Acknowledgment 261<br/><br/>References 261<br/><br/>Index 265
520 ## - SUMMARY, ETC.
Summary, etc "Solar energy has paved the way as an alternative to fossil fuels for present and future energy demands. Dye-sensitized solar cells (DSSC) are one of the most promising techniques to harvest solar energy and convert it into electrical energy because of their ease of production, low cost, flexibility, relatively high conversion efficiency, and low toxicity to the environment. DSSCs consist of components such as electrolytes, dyes, counter electrodes, and photoanodes. Among these, the photoanode plays a vital role and serves as the support for dye molecules and transport photo-excited electrons"--
Assigning source Provided by publisher.
545 0# - BIOGRAPHICAL OR HISTORICAL DATA
Biographical or historical note About the Author<br/>ALAGARSAMY PANDIKUMAR, PHD, is Scientist at CSIR-Central Electrochemical Research Institute, Karaikudi, India. His research includes development of novel materials involving graphene, graphitic carbon nitrides, and transition metal chalcogenides in combination with metals, metal oxides, polymers and carbon nanotubes for applications in photocatalysis, photoelectrocatalysis, dye-sensitized solar cells and electrochemical sensor.<br/><br/>KANDASAMY JOTHIVENKATACHALAM, PHD, is Professor of Chemistry at Anna University, BIT campus, Tiruchirappalli, India. His research interests include photocatalysis, photoelectrochemistry, photoelectrocatalysis, and chemically modified electrodes.<br/><br/>KARUPPANAPILLAI B. BHOJANAA, MSc, is DST-INSPIRE Research Fellow at Functional Materials Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Dye-sensitized solar cells.
Authority record control number http://id.loc.gov/authorities/subjects/sh2004001083.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Interfaces (Physical sciences)
Authority record control number http://id.loc.gov/authorities/subjects/sh94006577.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Bhojanaa, Karuppanapillai B.,
Dates associated with a name 1995-
Authority record control number http://id.loc.gov/authorities/names/no2019181704
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Jothivenkatachalam, Kandasamy,
Dates associated with a name 1973-
Authority record control number http://id.loc.gov/authorities/names/no2019044445
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Pandikumar, Alagarsamy,
Authority record control number http://id.loc.gov/authorities/names/no2014034493
Relator term editor.
856 ## - ELECTRONIC LOCATION AND ACCESS
Link text Full text is available at Wiley Online Library Click here to view
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781119557401?SeriesKey=10.1002/9781119489238
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Source of acquisition Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2024-12-30 Megatexts Phil. Inc. 52311 621.31244 In817 2020 CL-52311 2024-12-30 2024-12-30 EBOOK