Sample preparation with nanomaterials : (Record no. 89186)

000 -LEADER
fixed length control field 12289cam a2200445Ii 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20241113103817.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m o d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu|||unuuu
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210423s2021 gw m o u000 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783527685615
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783527685622
Qualifying information (electronic bk. : oBook)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 3527685626
Qualifying information (electronic bk. : oBook)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9783527338177
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1002/9783527685622
Source of number or code doi
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1247366596
040 ## - CATALOGING SOURCE
Original cataloging agency DG1
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency DG1
Modifying agency OCLCF
-- OCLCO
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TA418.9.N35
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 620.1/15
Edition number 23
245 00 - TITLE STATEMENT
Title Sample preparation with nanomaterials :
Remainder of title next generation techniques and applications /
Statement of responsibility, etc Chaudhery Mustansar Hussain, Rustem Kecili, Chaudhery Ghazanfar Hussain.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Weinheim, Germany :
Name of publisher, distributor, etc Wiley-VCH,
Date of publication, distribution, etc 2021.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource.
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent.
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia.
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier.
340 ## - PHYSICAL MEDIUM
Source rdacc
Authority record control number or standard number http://rdaregistry.info/termList/RDAColourContent/1003.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note Table of Contents<br/>1 Nanomaterials (NMs) in Analytical Sciences 1<br/><br/>1.1 Introduction 1 <br/><br/>1.2 Types of NMs 2<br/><br/>1.2.1 Graphene 2<br/><br/>1.2.2 Carbon Nanotubes (CNTs) 3<br/><br/>1.2.3 Fullerenes (FULs) 4<br/><br/>1.2.4 Inorganic Nanoparticles 6<br/><br/>1.2.4.1 Gold and Silver Nanoparticles 6<br/><br/>1.2.4.2 Titanium Nanoparticles 7<br/><br/>1.2.4.3 Silica Nanoparticles 7<br/><br/>1.2.5 Magnetic Nanoparticles 7<br/><br/>1.3 Applications of NMs 8<br/><br/>1.3.1 NMs in Separation Processes 8<br/><br/>1.3.2 NMs in Biomedical Applications 8<br/><br/>1.3.3 NMs in Sensor Platforms 12<br/><br/>1.4 Conclusions 16<br/><br/>References 19<br/><br/>2 Special Properties of Nanomaterials (NMs) for Sample Preparation 27<br/><br/>2.1 Introduction 27<br/><br/>2.2 Mechanical Properties of NMs 28<br/><br/>2.2.1 Hardness and Strength 28<br/><br/>2.2.2 Ductility 30<br/><br/>2.2.3 Applications of Mechanical Properties 32<br/><br/>2.3 Thermal Properties of NMs 33<br/><br/>2.4 Electrical Properties of NMs 35<br/><br/>2.5 Optical Properties of NMs 36<br/><br/>2.6 Magnetic Properties of NMs 37<br/><br/>2.7 Adsorption Properties of NMs 38<br/><br/>2.8 Conclusions 39<br/><br/>References 40<br/><br/>3 Adsorption Mechanism on Nanomaterials (NMs) 47<br/><br/>3.1 Introduction 47<br/><br/>3.2 Adsorption Process 48<br/><br/>3.2.1 Adsorption Isotherms 48<br/><br/>3.2.1.1 Langmuir Isotherm 50<br/><br/>3.2.1.2 Freundlich Isotherm 50<br/><br/>3.2.1.3 Temkin Isotherm 50<br/><br/>3.2.1.4 Dubinin–Radushkevich Model 51<br/><br/>3.2.1.5 Harkins–Jura and Halsey Isotherms 51<br/><br/>3.2.1.6 Redlich–Peterson Isotherm 51<br/><br/>3.2.1.7 BET (Brunauer, Emmett, and Teller) Isotherm 52<br/><br/>3.2.2 Adsorption Kinetics and Thermodynamics 52<br/><br/>3.2.2.1 Pseudo-first-order Kinetics 52<br/><br/>3.2.2.2 Pseudo-second-order Kinetics 53<br/><br/>3.2.2.3 Intraparticle Diffusion Model 53<br/><br/>3.2.2.4 Thermodynamic Study 53<br/><br/>3.2.3 Adsorption Process on Nanoparticles 54<br/><br/>3.2.3.1 Silver Nanoparticles 54<br/><br/>3.2.3.2 Gold Nanoparticles 55<br/><br/>3.2.3.3 Zinc Oxide Nanoparticles 56<br/><br/>3.2.3.4 Magnetic Fe3O4 Nanoparticles 56<br/><br/>3.2.4 Adsorption Process on Carbon Nanomaterials 58<br/><br/>3.2.4.1 Activated Carbon 58<br/><br/>3.2.4.2 Carbon Nanotubes (CNTs) 59<br/><br/>3.2.4.3 Graphene Oxide (GO) 60<br/><br/>3.3 Conclusions and Future Perspective 63<br/><br/>References 63<br/><br/>4 Carbon Nanomaterials (CNMs) as Adsorbents for Sample Preparation 71<br/><br/>4.1 Introduction 71<br/><br/>4.2 Carbon Nanomaterials (CNMs) 72<br/><br/>4.2.1 Carbon Nanotubes (CNTs) 72<br/><br/>4.2.2 Graphene 73<br/><br/>4.2.3 Fullerenes (FULs) 75<br/><br/>4.3 Adsorption on CNMs 76<br/><br/>4.4 Applications of CNMs 77<br/><br/>4.4.1 Extraction and Separation Applications 77<br/><br/>4.4.2 Chromatographic Applications 80<br/><br/>4.4.2.1 Chromatographic Stationary Phases Having CNTs 81<br/><br/>4.4.2.2 Chromatographic Stationary Phases Having FULs 83<br/><br/>4.5 Conclusions 84<br/><br/>References 84<br/><br/>5 Membrane Applications of Nanomaterials (NMs) 93<br/><br/>5.1 Introduction 93<br/><br/>5.2 Traditional Membranes 93<br/><br/>5.3 Carbon Nanomaterial-based Membranes 94<br/><br/>5.3.1 Graphene-based Membranes 94<br/><br/>5.3.2 Carbon Nanotube-based Membranes 97<br/><br/>5.3.3 Fullerene-based Membranes 100<br/><br/>5.4 Nanoparticle-based Membranes 101<br/><br/>5.5 Molecularly Imprinted Polymer (MIP)-based Membranes 102<br/><br/>5.6 Conclusions 105<br/><br/>References 108<br/><br/>6 Surface-Enhanced Raman Spectroscopy (SERS) with Nanomaterials (NMs) 117<br/><br/>6.1 Introduction 117<br/><br/>6.2 Theory of SERS 118<br/><br/>6.3 SERS Mechanisms 118<br/><br/>6.3.1 Electromagnetic Enhancement 119<br/><br/>6.3.2 Chemical Enhancement 120<br/><br/>6.4 Determination of SERS Enhancement Factor 121<br/><br/>6.5 Selection Rules 121<br/><br/>6.5.1 Image Field Model 121<br/><br/>6.5.2 Electromagnetic Field Model 122<br/><br/>6.6 Fabrications of SERS Substrates 123<br/><br/>6.6.1 Template-assisted Fabrication 124<br/><br/>6.6.2 Hybrid Fabrication 124<br/><br/>6.6.3 Fabrication by Using Colloids 124<br/><br/>6.6.4 Direct Deposition 125<br/><br/>6.7 Applications of SERS 125<br/><br/>6.7.1 SERS-Based Separation Applications 125<br/><br/>6.7.2 SERS-Based Sensor Applications 126<br/><br/>6.7.2.1 Environmental Analysis 126<br/><br/>6.7.2.2 Forensic Analysis 129<br/><br/>6.7.2.3 Biological Applications 131<br/><br/>6.8 Conclusions 133<br/><br/>References 133<br/><br/>7 Nanomaterials (NMs) for Biological Sample Preparations 147<br/><br/>7.1 Introduction 147<br/><br/>7.2 The Use of NMs in Diagnostic Platforms 148<br/><br/>7.2.1 The Optimization of NMs in Diagnostic Platforms 148<br/><br/>7.2.2 Biofunctionalization of NMs in Diagnostic Platforms 149<br/><br/>7.3 NMs-based Lab-on-a-chip (LOC) Platforms 150<br/><br/>7.3.1 Paper-based LOC Platforms 152<br/><br/>7.3.2 Centrifugal LOC Platforms 152<br/><br/>7.3.3 Droplet-based LOC Platforms 152<br/><br/>7.3.4 Digital LOC Platforms 152<br/><br/>7.3.5 Surface AcousticWave-based LOC Platforms 152<br/><br/>7.3.6 LOC Platforms for Biological Applications 153<br/><br/>7.4 Biomedical Applications of NMs 155<br/><br/>7.5 Sensor Applications of NMs 157<br/><br/>7.6 Conclusions 162<br/><br/>References 162<br/><br/>8 Magnetic Nanomaterials for Sample Preparation 173<br/><br/>8.1 Introduction 173<br/><br/>8.2 Synthesis of Magnetic Nanoparticles 174<br/><br/>8.2.1 Thermal Decomposition Technique 174<br/><br/>8.2.2 Coprecipitation Technique 175<br/><br/>8.2.3 Sol–Gel Synthesis 175<br/><br/>8.2.4 Hydrothermal Synthesis 176<br/><br/>8.2.5 Microemulsion-Based Synthesis 176<br/><br/>8.2.6 Flow Injection Synthesis 176<br/><br/>8.2.7 Aerosol/Vapor-Phase-Based Synthesis 176<br/><br/>8.3 Solid-Phase Extraction (SPE) 177<br/><br/>8.4 Magnetic Solid-Phase Extraction (MSPE) 177<br/><br/>8.4.1 MSPE for Environmental Samples 178<br/><br/>8.4.2 MSPE for Food and Beverage Samples 183<br/><br/>8.4.3 MSPE for Biological Samples 185<br/><br/>8.5 Conclusions and Future Trends 186<br/><br/>References 187<br/><br/>9 Lab-on-a-Chip with Nanomaterials (NMs) 195<br/><br/>9.1 Introduction 195<br/><br/>9.2 Lab-on-a-Chip (LOC) Concept 196<br/><br/>9.2.1 Paper-based LOC Systems 198<br/><br/>9.2.2 Centrifugal LOC Systems 198<br/><br/>9.2.3 Droplet-Based LOC Systems 198<br/><br/>9.2.4 Digital LOC Systems 199<br/><br/>9.2.5 Surface AcousticWave-Based LOC Systems 199<br/><br/>9.3 NM-Based LOC Platforms 199<br/><br/>9.3.1 NM-Based Transducers 199<br/><br/>9.3.1.1 Electrochemical Detection Systems 199<br/><br/>9.3.1.2 Optical Detection Systems 202<br/><br/>9.3.1.3 Other Detection Techniques 205<br/><br/>9.3.2 Nanoparticles as Labels in Microfluidics 206<br/><br/>9.3.3 NMs for Process Improvement 208<br/><br/>9.4 Conclusions and Future Perspectives 209<br/><br/>References 210<br/><br/>10 Toxicity and Risk Assessment of Nanomaterials 219<br/><br/>10.1 Introduction 219<br/><br/>10.2 Hazard Assessment of Nanomaterials 220<br/><br/>10.2.1 Dermal Toxicity of Nanomaterials 220<br/><br/>10.2.2 Inhalational Toxicity of Nanomater𝚤als 221<br/><br/>10.2.3 Carcinogenicity and Genotoxicity of Nanomaterials 223<br/><br/>10.2.4 Neurotoxicity of Nanomaterials 226<br/><br/>10.3 Toxicity Mechanism of Nanomaterials 227<br/><br/>10.4 The Traditional Risk Assessment Paradigm 229<br/><br/>10.5 Strategies for Improving Specific Risk Assessment 230<br/><br/>10.5.1 Combining Life Cycle Methodology with the Risk Assessment Approach 230<br/><br/>10.5.2 The Support of Risk-Based Classification Systems 231<br/><br/>10.6 Conclusions 232<br/><br/>References 232<br/><br/>11 Economic Aspects of Nanomaterials (NMs) for Sample Preparation 241<br/><br/>11.1 Introduction 241<br/><br/>11.2 Toxicity Concerns of NMs 242<br/><br/>11.3 Global Market for NM-Based Products 243<br/><br/>11.4 Conclusions 245<br/><br/>References 246<br/><br/>12 Legal Aspects of Nanomaterials (NMs) for Sample Preparation 251<br/><br/>12.1 Introduction 251<br/><br/>12.2 Safety Issues of NMs 251<br/><br/>12.3 Regulatory Aspects of NMs 252<br/><br/>12.3.1 Ethical Concerns in the Environmental Effects of NMs 253<br/><br/>12.3.2 Ethical Concerns in Occupational Health and Safety ofWorkers 254<br/><br/>12.3.3 Ethical Concerns of NMs in Food 255<br/><br/>12.3.4 Ethical Concerns of NMs in Drugs, Cosmetics, and Human Health 255<br/><br/>12.4 Conclusions 256<br/><br/>References 257<br/><br/>13 Monitoring of Nanomaterials (NMs) in the Environment 261<br/><br/>13.1 Introduction 261<br/><br/>13.2 Toxicity and Safety Concerns of NMs 262<br/><br/>13.3 Main Sources and Transport Routes of Nanopollutants 264<br/><br/>13.4 Requirements of Analytical Approaches 266<br/><br/>13.5 Sampling of NMs in Environmental Samples 266<br/><br/>13.6 Separation of NMs in Environmental Samples 267<br/><br/>13.7 Detection Techniques for the Characterization of NMs 268<br/><br/>13.8 Conclusions 270<br/><br/>References 270<br/><br/>14 Future Prospect of Sampling 275<br/><br/>14.1 Introduction 275<br/><br/>14.2 Sampling 276<br/><br/>14.3 Sample Preparation 276<br/><br/>14.4 Green Chemistry 278<br/><br/>14.5 Miniaturization of Analytical Systems 280<br/><br/>14.5.1 Miniaturization of Separation Techniques 281<br/><br/>14.5.2 Lab-on-a-Valve (LOV) as a Powerful Tool to Meet Green Chemical Principles 283<br/><br/>14.6 Conclusions 283<br/><br/>References 284<br/><br/>Index 289
520 ## - SUMMARY, ETC.
Summary, etc Sample Preparation with Nanomaterials: Next Generation Techniques for Sample Preparation delivers insightful and complete overview of recent progress in the use of nanomaterials in sample preparation. The book begins with an overview of special features of nanomaterials and their applications in analytical sciences. Important types of nanomaterials, like carbon nanotubes and magnetic particles, are reviewed and biological sample preparation and lab-on-a-chip systems are presented. <br/><br/>The distinguished author places special emphasis on approaches that tend to green and reduce the cost of sample treatment processes. He also discusses the legal, economical, and toxicity aspects of nanomaterial samples. This book includes extensive reference material, like a complete list of manufacturers, that makes it invaluable for professionals in analytical chemistry.
545 0# - BIOGRAPHICAL OR HISTORICAL DATA
Biographical or historical note About the Author<br/>Chaudhery Mustansar Hussain, PhD, is an Adjunct Professor and Director of Labs in the Department of Chemistry & Environmental Sciences at the New Jersey Institute of Technology (NJIT), Newark, New Jersey, USA. His research is focused on nanotechnology, analytical chemistry, advanced technologies & materials, environmental management, and various industries. Dr. Hussain is the author of numerous papers in peer-reviewed journals as well as prolific author and editor of several (around 50 books) scientific monographs and handbooks in his research areas.<br/><br/>Rüstem Keçili is currently an Associate Professor at the Yunus Emre Vocational School of Health Services, Anadolu University, Turkey. He worked as a researcher at MIP Technologies AB, Sweden, and was a visiting researcher at the University of Manchester, UK. His professional background covers nanomaterials, molecularly imprinted polymers and chromatography.<br/><br/>Chaudhery Ghazanfar Hussain is a Research Scholar in Computer Science and Technology at the Department of Education, Punjab, Pakistan. His key areas of research are Data Science, Computer Networks, Environmental Modeling, nanomaterials and Industrial development. He is author of monographs on software technology. He is a true IT professional and affiliated with several companies.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Nanostructured materials.
Authority record control number http://id.loc.gov/authorities/subjects/sh93000864.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Sample preparation (Chemistry)
Authority record control number http://id.loc.gov/authorities/subjects/sh2005006068.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Hussain, Chaudhery Mustansar,
Authority record control number http://id.loc.gov/authorities/names/no2018058607
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Kecili, Rustem,
Authority record control number http://id.loc.gov/authorities/names/no2020075434
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Hussain, Chaudhery Ghazanfar,
Relator term editor.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element Ohio Library and Information Network.
Authority record control number http://id.loc.gov/authorities/names/no95058981.
856 ## - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9783527685622
Link text Full text is available at Wiley Online Library Click here to view
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK

No items available.