Biomolecular simulations in structure-based drug discovery / (Record no. 88888)

000 -LEADER
fixed length control field 12554cam a22004577a 4500
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20241003124234.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m o d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu---unuuu
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 241003b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783527342655
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783527806843
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 3527806849
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783527806850
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 3527806857
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783527806836
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 3527806830
Qualifying information (electronic bk.)
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1079363260
040 ## - CATALOGING SOURCE
Original cataloging agency N$T
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency N$T
Modifying agency N$T
-- DG1
-- OCLCF
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number RM301.3.G45
072 #7 - SUBJECT CATEGORY CODE
Subject category code MED
Subject category code subdivision 071000
Source bisacsh
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 615.7
Edition number 23
245 00 - TITLE STATEMENT
Title Biomolecular simulations in structure-based drug discovery /
Statement of responsibility, etc edited by Francesco L. Gervasio and Vojtech Spiwok.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Weinheim, Germany :
Name of publisher, distributor, etc Wiley-VCH,
Date of publication, distribution, etc 2019.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource.
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent.
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia.
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier.
340 ## - PHYSICAL MEDIUM
Source rdacc
Authority record control number or standard number http://rdaregistry.info/termList/RDAColourContent/1003.
490 1# - SERIES STATEMENT
Series statement Methods and principles in medicinal chemistry ;
Volume number/sequential designation volume 75.
505 0# - CONTENTS
Formatted contents note Table of Contents<br/>Foreword xiii<br/><br/>Part I Principles 1<br/><br/>1 Predictive Power of Biomolecular Simulations 3<br/>Vojtech Spiwok<br/><br/>1.1 Design of Biomolecular Simulations 4<br/><br/>1.2 Collective Variables and Trajectory Clustering 6<br/><br/>1.3 Accuracy of Biomolecular Simulations 8<br/><br/>1.4 Sampling 10<br/><br/>1.5 Binding Free Energy 14<br/><br/>1.6 Convergence of Free Energy Estimates 16<br/><br/>1.7 Future Outlook 20<br/><br/>References 21<br/><br/>2 Molecular Dynamics–Based Approaches Describing Protein Binding 29<br/>Andrea Spitaleri and Walter Rocchia<br/><br/>2.1 Introduction 29<br/><br/>2.1.1 Protein Binding: Molecular Dynamics Versus Docking 30<br/><br/>2.1.2 Molecular Dynamics –The Current State of the Art 31<br/><br/>2.2 Protein–Protein Binding 32<br/><br/>2.3 Protein–Peptide Binding 34<br/><br/>2.4 Protein–Ligand Binding 36<br/><br/>2.5 Future Directions 38<br/><br/>2.5.1 Modeling of Cation-p Interactions 38<br/><br/>2.6 Grand Challenges 39<br/><br/>References 39<br/><br/>Part II Advanced Algorithms 43<br/><br/>3 Modeling Ligand–Target Binding with Enhanced Sampling Simulations 45<br/>Federico Comitani and Francesco L. Gervasio<br/><br/>3.1 Introduction 45<br/><br/>3.2 The Limits of Molecular Dynamics 46<br/><br/>3.3 TemperingMethods 47<br/><br/>3.4 Multiple Replica Methods 48<br/><br/>3.5 Endpoint Methods 50<br/><br/>3.5.1 Alchemical Methods 50<br/><br/>3.6 Collective Variable-Based Methods 51<br/><br/>3.6.1 Metadynamics 52<br/><br/>3.7 Binding Kinetics 57<br/><br/>3.8 Conclusions 59<br/><br/>References 60<br/><br/>4 Markov State Models in Drug Design 67<br/>Bettina G. Keller, Stevan Aleksic, and Luca Donati<br/><br/>4.1 Introduction 67<br/><br/>4.2 Markov State Models 68<br/><br/>4.2.1 MD Simulations 68<br/><br/>4.2.2 The Molecular Ensemble 69<br/><br/>4.2.3 The Propagator 69<br/><br/>4.2.4 The Dominant Eigenspace 70<br/><br/>4.2.5 The Markov State Model 72<br/><br/>4.3 Microstates 75<br/><br/>4.4 Long-Lived Conformations 77<br/><br/>4.5 Transition Paths 79<br/><br/>4.6 Outlook 81<br/><br/>Acknowledgments 82<br/><br/>References 82<br/><br/>5 Monte Carlo Techniques for Drug Design: The Success Case of PELE 87<br/>Joan F. Gilabert, Daniel Lecina, Jorge Estrada, and Victor Guallar<br/><br/>5.1 Introduction 87<br/><br/>5.1.1 First Applications 88<br/><br/>5.1.2 Free Energy Calculations 88<br/><br/>5.1.3 Optimization 88<br/><br/>5.1.4 MC and MD Combinations 89<br/><br/>5.2 The PELE Method 90<br/><br/>5.2.1 MC Sampling Procedure 91<br/><br/>5.2.2 Ligand Perturbation 91<br/><br/>5.2.3 Receptor Perturbation 91<br/><br/>5.2.4 Side-Chain Adjustment 93<br/><br/>5.2.5 Minimization 93<br/><br/>5.2.6 Coordinate Exploration 93<br/><br/>5.2.7 Energy Function 94<br/><br/>5.3 Examples of PELE’s Applications 94<br/><br/>5.3.1 Mapping Protein Ligand and Biomedical Studies 94<br/><br/>5.3.2 Enzyme Characterization 96<br/><br/>Acknowledgments 97<br/><br/>References 97<br/><br/>6 Understanding the Structure and Dynamics of Peptides and Proteins Through the Lens of Network Science 105<br/>Mathieu Fossepre, Laurence Leherte, Aatto Laaksonen, and Daniel P. Vercauteren<br/><br/>6.1 Insight into the Rise of Network Science 105<br/><br/>6.2 Networks of Protein Structures: Topological Features and Applications 107<br/><br/>6.2.1 Topological Features and Analysis of Networks: A Brief Overview 107<br/><br/>6.2.2 Centrality Measures and Protein Structures 110<br/><br/>6.2.3 Software 114<br/><br/>6.3 Networks of Protein Dynamics: Merging Molecular Simulation Methods and Network Theory 117<br/><br/>6.3.1 Molecular Simulations: A Brief Overview 117<br/><br/>6.3.2 How Can Network Science Help in the Analysis of Molecular Simulations? 118<br/><br/>6.3.3 Software 119<br/><br/>6.4 Coarse-Graining and Elastic Network Models: Understanding Protein Dynamics with Networks 120<br/><br/>6.4.1 Coarse-Graining: A Brief Overview 120<br/><br/>6.4.2 Elastic Network Models: General Principles 123<br/><br/>6.4.3 Elastic Network Models: The Design of Residue Interaction Networks 124<br/><br/>6.5 Network Modularization to Understand Protein Structure and Function 128<br/><br/>6.5.1 Modularization of Residue Interaction Networks 128<br/><br/>6.5.2 Toward the Design of Meso scale Protein Models with Network Modularization Techniques 130<br/><br/>6.6 Laboratory Contributions in the Field of Network Science 131<br/><br/>6.6.1 Graph Reduction of Three-Dimensional Molecular Fields of Peptides and Proteins 132<br/><br/>6.6.2 Design of Multi scale Elastic Network Models to Study Protein Dynamics 135<br/><br/>6.7 Conclusions and Perspectives 140<br/><br/>Acknowledgments 142<br/><br/>References 142<br/><br/>Part III Applications and Success Stories 163<br/><br/>7 From Computers to Bedside: Computational Chemistry Contributing to FDA Approval 165<br/>Christina Athanasiou and Zoe Cournia<br/><br/>7.1 Introduction 165<br/><br/>7.2 Rationalizing the Drug Discovery Process: Early Days 166<br/><br/>7.2.1 Captopril (Capoten®) 167<br/><br/>7.2.2 Saquinavir (Invirase®) 167<br/><br/>7.2.3 Ritonavir (Norvir®) 168<br/><br/>7.3 Use of Computer-Aided Methods in the Drug Discovery Process 168<br/><br/>7.3.1 Ligand-Based Methods 169<br/><br/>7.3.1.1 Overlay of Structures 169<br/><br/>7.3.1.2 Pharmacophore Modeling 171<br/><br/>7.3.1.3 Quantitative Structure–Activity Relationships (QSAR) 172<br/><br/>7.3.2 Structure-Based Methods 173<br/><br/>7.3.2.1 Molecular Docking – Virtual Screening 175<br/><br/>7.3.2.2 Flexible Receptor Molecular Docking 179<br/><br/>7.3.2.3 Molecular Dynamics Simulations 179<br/><br/>7.3.2.4 De Novo Drug Design 180<br/><br/>7.3.2.5 Protein Structure Prediction 181<br/><br/>7.3.2.6 Rucaparib (Zepatier®) 184<br/><br/>7.3.3 Ab InitioQuantumChemical Methods 185<br/><br/>7.4 Future Outlook 186<br/><br/>References 190<br/><br/>8 Application of Biomolecular Simulations to G Protein–Coupled Receptors (GPCRs) 205<br/>Mariona Torrens-Fontanals, TomaszM. Stepniewski, Ismael Rodriguez-Espigares, and Jana Selent<br/><br/>8.1 Introduction 205<br/><br/>8.2 MD Simulations for Studying the Conformational Plasticity of GPCRs 207<br/><br/>8.2.1 Challenges in GPCR Simulations: The Sampling Problem and Simulation Timescales 208<br/><br/>8.2.2 Making Sense Out of Simulation Data 209<br/><br/>8.3 Application of MD Simulations to GPCR Drug Design:Why Should We Use MD? 210<br/><br/>8.4 Evolution of MD Timescales 214<br/><br/>8.5 Sharing MD Data via a Public Database 216<br/><br/>8.6 Conclusions and Perspectives 216<br/><br/>Acknowledgments 217<br/><br/>References 217<br/><br/>9 Molecular Dynamics Applications to GPCR Ligand Design 225<br/>Andrea Bortolato, Francesca Deflorian, Giuseppe Deganutti, Davide Sabbadin,StefanoMoro, and Jonathan S.Mason<br/><br/>9.1 Introduction 225<br/><br/>9.2 The Role of Water in GPCR Structure-Based Ligand Design 226<br/><br/>9.2.1 WaterMap and WaterFLAP 228<br/><br/>9.3 Ligand-Binding Free Energy 230<br/><br/>9.4 Ligand-Binding Kinetics 233<br/><br/>9.4.1 Supervised Molecular Dynamics (SuMD) 235<br/><br/>9.4.2 Adiabatic Bias Metadynamics 238<br/><br/>9.5 Conclusion 241<br/><br/>References 242<br/><br/>10 Ion Channel Simulations 247<br/>Saurabh Pandey, Daniel Bonhenry, and Rudiger H. Ettrich<br/><br/>10.1 Introduction 247<br/><br/>10.2 Overview of Computational Methods Applied to Study Ion Channels 248<br/><br/>10.2.1 Homology Modeling 248<br/><br/>10.2.2 All-atom Molecular Dynamics Simulations 249<br/><br/>10.2.2.1 Force Fields 250<br/><br/>10.2.3 Methods for Calculation of Free Energy 251<br/><br/>10.2.3.1 Free Energy Perturbation 251<br/><br/>10.2.3.2 Umbrella Sampling 251<br/><br/>10.2.3.3 Metadynamics 252<br/><br/>10.2.3.4 Adaptive Biased Force Method 252<br/><br/>10.3 Properties of Ion Channels Studied by Computational Modeling 253<br/><br/>10.3.1 A Refined Atomic Scale Model of the Saccharomyces cerevisiae K+-translocation Protein Trk1p 253<br/><br/>10.3.2 Homology Modeling, Docking, and Mutagenesis Studies of Human Melatonin Receptors 254<br/><br/>10.3.3 Selectivity and Permeation in Voltage-Gated Sodium (NaV) Channels 254<br/><br/>10.3.4 Study of Ion Conduction Mechanism, Favorable Translocation Path,and Ion Selectivity in KcsA Using Free Energy Perturbation and Umbrella Sampling 257<br/><br/>10.3.5 Ion Conductance Calculations 260<br/><br/>10.3.5.1 Voltage-Dependent Anion Channel (VDAC) 261<br/><br/>10.3.5.2 Calculation of Ion Conduction in Low-Conductance GLIC Channel 261<br/><br/>10.3.6 Transient Receptor Potential (TRP) Channels 263<br/><br/>10.4 Free Energy Methods Applied to Channels Bearing Hydrophobic Gates 264<br/><br/>10.5 Conclusion 270<br/><br/>Acknowledgments 271<br/><br/>References 271<br/><br/>11 Understanding Allostery to Design New Drugs 281<br/>Giulia Morra and Giorgio Colombo<br/><br/>11.1 Introduction 281<br/><br/>11.2 Protein Allostery: Basic Concepts and Theoretical Framework 282<br/><br/>11.2.1 The Classic View of Allostery 283<br/><br/>11.2.2 The Thermodynamic Two-State Model of Allostery 283<br/><br/>11.2.3 From Thermodynamics to Protein Structure and Dynamics 285<br/><br/>11.2.4 Entropy in Allostery: The Ensemble Allostery Model 287<br/><br/>11.3 Exploiting Allostery in Drug Discovery and Design 288<br/><br/>11.3.1 Computational Prediction of Allosteric Behavior and Application to Drug Discovery 288<br/><br/>11.3.2 Identification of Allosteric Binding Sites Through Structural and Dynamic approaches 289<br/><br/>11.4 Chaperones 291<br/><br/>11.5 Kinases 293<br/><br/>11.6 GPCRs 294<br/><br/>11.7 Conclusions 296<br/><br/>References 296<br/><br/>12 Structure and Stability of Amyloid Protofibrils of Polyglutamine and Polyasparagine from Molecular Dynamics Simulations 301 <br/>Viet HoangMan, Yuan Zhang, Christopher Roland, and Celeste Sagui<br/><br/>12.1 Introduction 301<br/><br/>12.2 Polyglutamine Protofibrils and Aggregates 303<br/><br/>12.2.1 Investigations of Oligomeric Q8 Structures 303<br/><br/>12.2.2 Time Evolution, Steric Zippers, and Crystal Structures of 4 × 4 Q8Aggregates 306<br/><br/>12.2.3 Monomeric Q40 Protofibrils 308<br/><br/>12.3 Amyloid Models of Asparagine (N) and Glutamine(Q) 311<br/><br/>12.3.1 Initial Structures 313<br/><br/>12.3.2 Monomeric PolyQ βHairpinsAre More Stable than PolyN Hairpins 314<br/><br/>12.3.3 N-rich Oligomers Are Most Stable in Class 1 Steric Zippers with 2-by-2 Interdigitation 315<br/><br/>12.3.4 PolyQ Oligomers Are Most Stable in Antiparallel Stranded β Sheets with 1-by-1 Steric Zippers 316<br/><br/>12.3.5 PolyQ Structures Show Higher Stability than Most Stable PolyN Structures 317<br/><br/>12.3.6 Thermodynamic Considerations of Aggregate Formation 318<br/><br/>12.4 Summary 319<br/><br/>Acknowledgments 320<br/><br/>References 320<br/><br/>13 Using Biomolecular Simulations to Target Cdc34 in Cancer 325<br/>Miriam Di Marco, Matteo Lambrughi, and Elena Papaleo<br/><br/>13.1 Background 325<br/><br/>13.2 Families of E2 Enzymes 327<br/><br/>13.3 Cdc34 Protein Sequence and Structure 328<br/><br/>13.4 Cdc34 Heterogeneous Conformational Ensemble in Solution 329<br/><br/>13.5 Long-Range Communication in Family 3 Enzymes: A Structural Path from the Ub-Binding Site to the E3 Recognition Site 330<br/><br/>13.6 Cdc34 Modulation by Phosphorylation: From Phenotype to Structure 331<br/><br/>13.7 The Dual Role of the Acidic Loop of Cdc34: Regulator of Activity and Interface for E3 Binding 332<br/><br/>13.8 Different Strategies to Target Cdc34 with Small Molecules 333<br/><br/>13.9 Conclusions and Perspectives 334<br/><br/>Acknowledgments 336<br/><br/>References 336<br/><br/>Index 343
545 0# - BIOGRAPHICAL OR HISTORICAL DATA
Biographical or historical note About the Author<br/>Francesco Luigi Gervasio holds a chair in Biomolecular Modelling and is professor of Chemistry and professor of Structural and Molecular Biology at University College London (UK).<br/><br/>Vojtech Spiwok is a researcher of University of Chemistry and Technology, Prague (Czech Republic). He has authored numerous scientific publications on biomolecular simulations with a special emphasis on development and application of enhanced sampling techniques.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Pharmacogenomics.
Authority record control number http://id.loc.gov/authorities/subjects/sh99000126.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Gervasio, Francesco L.,
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Spiwok, Vojtech,
Relator term editor.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Methods and principles in medicinal chemistry ;
Authority record control number http://id.loc.gov/authorities/names/n94037416
Volume number/sequential designation volume 75.
856 ## - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9783527806836
Link text Full text is available at Wiley Online Library Click here to view
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type BOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2024-10-03 51269 615.7 B5219 2019 CL-51269 2024-10-03 2024-10-03 BOOK