000 -LEADER |
fixed length control field |
14905nam a2200421Ii 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20240911153606.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION |
fixed length control field |
m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
cr cnu|||unuuu |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
240911b |||||o|||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9783527346363 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9783527822454 |
Qualifying information |
(electronic bk. : oBook) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
3527822453 |
Qualifying information |
(electronic bk. : oBook) |
024 7# - OTHER STANDARD IDENTIFIER |
Standard number or code |
10.1002/9783527822454 |
Source of number or code |
doi |
035 ## - SYSTEM CONTROL NUMBER |
System control number |
(OCoLC)1284933414 |
041 ## - LANGUAGE CODE |
Language code of text/sound track or separate title |
eng |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
TA1815 |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
681/.25 |
Edition number |
23 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Preferred name for the person |
Liu, Tiegen, |
Dates associated with a name |
1955- |
Authority record control number |
http://id.loc.gov/authorities/names/n2014004870 |
Relator term |
author. |
245 10 - TITLE STATEMENT |
Title |
Optical fiber sensing technologies : |
Remainder of title |
principles, techniques and applications / |
Statement of responsibility, etc |
Tiegen Liu, Junfeng Jiang, kun Liu, Shuang Wang. |
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Place of publication, distribution, etc |
Weinheim, Germany : |
Name of publisher, distributor, etc |
Wiley-VCH, |
Date of publication, distribution, etc |
[2022] |
300 ## - PHYSICAL DESCRIPTION |
Extent |
1 online resource. |
336 ## - CONTENT TYPE |
Content type term |
text |
Content type code |
txt |
Source |
rdacontent. |
337 ## - MEDIA TYPE |
Media type term |
computer |
Media type code |
c |
Source |
rdamedia. |
338 ## - CARRIER TYPE |
Carrier type term |
online resource |
Carrier type code |
cr |
Source |
rdacarrier. |
340 ## - PHYSICAL MEDIUM |
Source |
rdacc |
Authority record control number or standard number |
http://rdaregistry.info/termList/RDAColourContent/1003. |
505 0# - CONTENTS |
Formatted contents note |
Table of Contents<br/>Volume 1<br/><br/>Preface xiii<br/><br/>1 Optical Fiber and Optical Devices 1<br/><br/>1.1 Optical Fiber 1<br/><br/>1.2 Light Source 3<br/><br/>1.2.1 Semiconductor Laser 3<br/><br/>1.2.2 Optical Fiber Laser 6<br/><br/>1.3 Optical Amplifier 9<br/><br/>1.3.1 Erbium-Doped Fiber Amplifier 9<br/><br/>1.3.2 Semiconductor Optical Amplifier 12<br/><br/>1.4 Detector 14<br/><br/>1.5 Optical Fiber Passive Device 17<br/><br/>1.5.1 Optical Fiber Coupler 17<br/><br/>1.5.2 Optical Fiber Polarizer 18<br/><br/>1.5.3 Optical Fiber Isolator 19<br/><br/>1.5.4 Optical Fiber Circulator 20<br/><br/>1.5.5 Optical Fiber Switcher 22<br/><br/>1.5.5.1 Mechanical Optical Fiber Switcher 23<br/><br/>1.5.5.2 Solid Physical Effect-Based Optical Fiber Switcher 24<br/><br/>1.6 Optical Fiber Modulator 26<br/><br/>1.6.1 Optical Fiber Phase Modulator 26<br/><br/>1.6.2 Optical Fiber Intensity Modulator 27<br/><br/>References 28<br/><br/>Part I Discrete Optical Fiber Sensing 31<br/><br/>2 Optical Fiber Bragg Grating Sensing Technology 33<br/><br/>2.1 Principle of Fiber Bragg Grating Sensing 33<br/><br/>2.2 Photosensitivity of Ge-Doped Fiber 34<br/><br/>2.3 Fabrication of Fiber Bragg Grating 37<br/><br/>2.4 Package Design for Strain and Temperature Sensing 40<br/><br/>2.4.1 Package Design for Temperature Sensing 41<br/><br/>2.4.2 Package Design for Strain Sensing 44<br/><br/>2.4.3 Performance Evaluation Under Cryogenic Temperature 47<br/><br/>2.5 Demodulation of Fiber Bragg Grating Sensing for Space Application 55<br/><br/>2.5.1 Demodulation Theory of Fiber Bragg Grating Sensing 55<br/><br/>2.5.2 Demodulation Instrument Development 63<br/><br/>2.5.3 Effect of Environment Temperature Variation 64<br/><br/>2.5.4 Performance of FBG in Space Vacuum Thermal Environment 80<br/><br/>2.5.5 Cryogenic Static Measurement 84<br/><br/>References 90<br/><br/>3 Extrinsic Fabry–Pérot Interferometer-Based Optical Fiber Sensing Technology 93<br/><br/>3.1 Principle of Fabry–Pérot Interferometer 93<br/><br/>3.2 Fabry–Pérot Interferometer-Based Optical Fiber Sensor Structure 95<br/><br/>3.2.1 Fiber-Optic Intrinsic Fabry–Pérot Interferometer 95<br/><br/>3.2.1.1 IFPI Based on Reflective Film Coating on Fiber End 96<br/><br/>3.2.1.2 IFPI Based on UV-Induced Refractive Index Change 96<br/><br/>3.2.1.3 IFPI Based on Fusion Splicing of Different Kinds of Fibers 97<br/><br/>3.2.2 Fiber-Optic Extrinsic Fabry–Pérot Interferometer 98<br/><br/>3.2.2.1 EFPI Based on Capillary and Two Optical Fibers 99<br/><br/>3.2.2.2 EFPI Based on Diaphragm 100<br/><br/>3.2.2.3 EFPI Based on Air Gap in Fiber 101<br/><br/>3.2.2.4 EFPI Sensors Based on Angle-Polished Fiber End 102<br/><br/>3.2.2.5 EFPI Based on Transparent Medium 103<br/><br/>3.2.2.6 EFPI Based on In-Line Fiber Splicing 103<br/><br/>3.3 Optical Fiber Fabry–Pérot Interferometer Sensor Based on MEMS 104<br/><br/>3.3.1 Silicon-Diaphragm Optical Fiber Pressure Sensor 105<br/><br/>3.3.2 Temperature-Compensated Silicon-Based Optical Fiber Pressure Sensor 107<br/><br/>3.3.3 Non-intrusive Optical Fiber Sensor Head Chip Inspection 110<br/><br/>3.3.3.1 Self-Referenced Residual Pressure Measurement Method 111<br/><br/>3.3.3.2 Residual Pressure Self-Measurement Method 112<br/><br/>3.4 Polarization Low-Coherence Interference Demodulation for Pressure Sensing 114<br/><br/>3.4.1 Demodulation Theory 114<br/><br/>3.4.2 Demodulation Instrument 117<br/><br/>3.4.3 Demodulation Algorithm 118<br/><br/>3.4.4 Low-Coherence Interference Multiplexing 124<br/><br/>3.5 Application 129<br/><br/>3.5.1 Optical Fiber Pressure Sensing in Ocean Application 129<br/><br/>3.5.2 Optical Fiber Pressure Sensing in Aviation Application 129<br/><br/>References 132<br/><br/>4 Extrinsic Fabry–Perot Interferometer-Based Optical Fiber Acoustic Sensing Technology 137<br/><br/>4.1 Polymer Diaphragm Optical Fiber Acoustic Sensor 137<br/><br/>4.1.1 Basic Description of Fiber-Optic Fabry–Perot Acoustic Sensor 137<br/><br/>4.1.2 The Diaphragm Used for Optical Fiber Acoustic Sensing 137<br/><br/>4.2 Sensor Design and Parameters Optimization 138<br/><br/>4.2.1 Structure of Fiber-Optic Fabry–Perot Acoustic Vibration Sensor 138<br/><br/>4.2.2 Parameter Optimization of Sensor 140<br/><br/>4.3 Demodulation 141<br/><br/>4.3.1 Quadrature Phase Demodulation Theory 142<br/><br/>4.3.1.1 Principle of Dual-Laser Quadrature Phase Demodulation 143<br/><br/>4.3.1.2 Principle of Phase-Shifting Demodulation Using Birefringence Crystals 145<br/><br/>4.3.2 Dual-Laser Quadrature Phase Demodulation Instrument 153<br/><br/>4.3.3 Phase-Shifting Demodulation Instrument Using Birefringence Crystals 155<br/><br/>4.4 Optical Fiber Acoustic Sensing in Space Application 159<br/><br/>4.4.1 The Significance of Applying Optical Fiber Acoustic Sensor to Aerospace 159<br/><br/>4.4.2 Application of Optical Fiber Acoustic Vibration Sensor in Monitoring Requirement of Water Sublimator 160<br/><br/>4.4.3 Application of Optical Fiber Acoustic Sensor System in Low-Pressure Carbon Dioxide Environment 163<br/><br/>References 167<br/><br/>5 Extrinsic Fabry–Perot Interferometer-Based Optical Fiber High-Temperature Sensing Technology 169<br/><br/>5.1 Sapphire Material Characteristic 169<br/><br/>5.1.1 Optical Properties of Sapphire Crystal 169<br/><br/>5.1.2 Temperature Characteristics of Sapphire Crystal 171<br/><br/>5.1.2.1 Sapphire Fiber 171<br/><br/>5.1.3 Sapphire Wafer 172<br/><br/>5.2 Sapphire Fiber Fabry–Perot High-Temperature Sensor Design and Fabrication 173<br/><br/>5.2.1 Theory of Fiber Fabry–Perot High-Temperature Sensing 173<br/><br/>5.2.2 Fiber Coupling Model of Fabry–Perot Interference Signal 174<br/><br/>5.2.3 Temperature Characteristics of Sapphire Fabry–Perot Cavity 176<br/><br/>5.2.4 Sapphire Fiber and Multimode Fiber Beam Coupling Process 177<br/><br/>5.2.5 Sapphire Fiber Fabry–Perot High-Temperature Sensor Packaging Process 180<br/><br/>5.3 Sapphire Fiber Fabry–Perot High-Temperature Sensing Demodulation System 181<br/><br/>5.3.1 Sensing Demodulation System 181<br/><br/>5.3.2 Interference Spectrum Signal Characteristics of Sensing System 182<br/><br/>5.3.3 Influence of Spectral Distribution of Light Source on Peak Position of Interference Spectrum Signal 185<br/><br/>5.3.4 Typical Spectral Demodulation Principle 187<br/><br/>5.3.4.1 Single-Peak Demodulation 187<br/><br/>5.3.4.2 Dual-Peak Demodulation 189<br/><br/>5.3.4.3 Fourier Transform Demodulation 189<br/><br/>5.3.5 Demodulation Algorithm Based on Interferometric Spectral Phase Analysis 191<br/><br/>5.4 Analysis of Sensing Performance of Sapphire Fiber Fabry–Perot High-Temperature Sensor 192<br/><br/>5.4.1 Sensor Response Speed 193<br/><br/>5.4.2 Different Signal-to-Noise Ratios and Fabry–Perot Cavity Lengths 193<br/><br/>5.5 Self-Filtering High Fringe Contrast Sapphire Fiber Fabry–Perot High-Temperature Sensor 197<br/><br/>5.6 Summary 202<br/><br/>References 203<br/><br/>6 Assembly-Free Micro-interferometer-Based Optical Fiber Sensing Technology 207<br/><br/>6.1 Assembly-Free In-Fiber Micro-interferometer 207<br/><br/>6.2 Optical Fiber Sensor Based on Fiber Tip Micro-Michelson Interferometer 208<br/><br/>6.2.1 Principle of Optical Fiber Michelson Interferometer 208<br/><br/>6.2.2 Structure of Micro-Michelson Interferometer on a Fiber Tip 209<br/><br/>6.2.3 High-Temperature Sensing 211<br/><br/>6.3 Optical Fiber Sensor Based on In-Line Mach–Zehnder Interferometer 212<br/><br/>6.3.1 Principle of Optical Fiber Mach–Zehnder Interferometer 212<br/><br/>6.3.2 Structure of In-Line Mach–Zehnder Interferometer 213<br/><br/>6.3.3 In-Line Mach–Zehnder Interferometer Sensor 215<br/><br/>6.3.3.1 High-Temperature Sensor 216<br/><br/>6.3.3.2 Refractive Index Sensor 216<br/><br/>6.3.3.3 Strain Sensor 217<br/><br/>6.4 Optical Fiber Sensor Based on Fabry–Perot Interferometer 218<br/><br/>6.4.1 Principle of Optical Fiber Fabry–Perot Interferometer 218<br/><br/>6.4.1.1 Principle of Multiple-Beams Interference 218<br/><br/>6.4.1.2 Principle of Multiple-Cavity Interference 220<br/><br/>6.4.2 Structure of Fiber Fabry–Perot Interferometer 221<br/><br/>6.4.3 Fiber Fabry–Perot Interferometer Sensor 223<br/><br/>6.4.3.1 Refractive Index Sensor 223<br/><br/>6.4.3.2 Pressure and Strain Sensor 224<br/><br/>6.4.3.3 High-Temperature Sensor 224<br/><br/>6.4.3.4 Multiple-Parameter Sensor 225<br/><br/>6.5 Discussion and Conclusion 226<br/><br/>References 226<br/><br/>7 Surface Plasmon Resonance-Based Optical Fiber Sensing Technology 233<br/><br/>7.1 Coating of Optical Fiber 233<br/><br/>7.1.1 Physical Vapor Deposition 234<br/><br/>7.1.1.1 Sputter Deposition 234<br/><br/>7.1.1.2 Evaporation 234<br/><br/>7.1.1.3 The Holding Mechanism of the Optical Fiber in PVD 235<br/><br/>7.1.2 Chemical Liquid Phase Deposition 237<br/><br/>7.1.3 Metal Nanoparticles and Nanowires 238<br/><br/>7.2 Theoretical Modeling Multimode Optical Fiber Sensor Based on SPR 238<br/><br/>7.2.1 The Model 239<br/><br/>7.2.2 Experimental Verification 247<br/><br/>7.3 EMD-Based Filtering Algorithm 250<br/><br/>References 256<br/><br/>8 Sagnac Interferometer-Based Optical Fiber Sensing Technology 259<br/><br/>8.1 Principle of Sagnac Interferometer 259<br/><br/>8.2 Optical Fiber Gyroscope (FOG) 260<br/><br/>8.3 Optical Fiber Coil Quality Inspection Method 264<br/><br/>8.3.1 Optical Fiber Coil and its Winding Method 264<br/><br/>8.3.2 Polarization Crosstalk Measurement of Fiber Coils 267<br/><br/>8.3.2.1 The Principle of Polarization Crosstalk of PMF 268<br/><br/>8.3.2.2 The Principle of Distributed Polarization Crosstalk Measurements and Controls 269<br/><br/>8.3.2.3 PMF Coils Polarization Crosstalk Measurements and Controls 271<br/><br/>8.3.2.4 Raw PMFs Quality Testing 271<br/><br/>8.3.2.5 Online PMF Coils Polarization Crosstalk Measurements and Controls 272<br/><br/>8.3.2.6 Online Controls for Winding Tensions 273<br/><br/>8.3.2.7 Online Testing for Winding Symmetry 273<br/><br/>8.3.2.8 Overall PMF Coils’ Inspection 275<br/><br/>8.3.2.9 PMF Coils’ Technique Inspection 275<br/><br/>8.3.3 Transient Characteristics Measurement of Fiber Coils 276<br/><br/>8.3.3.1 Pointing Error Caused by Time-Dependent Radial Thermal Gradient 277<br/><br/>8.3.3.2 Experimental Result and Discussions of Transient Characteristics Measurement of Fiber Coils 281<br/><br/>8.3.4 Tomographic Inspection of Fiber Coils 286<br/><br/>8.3.4.1 Principle of Tomographic Inspection of Fiber Coils 287<br/><br/>8.4 Optical Fiber Current Sensing 291<br/><br/>References 294<br/><br/>9 Optical Fiber Sensors Based on the SMS Structure 303<br/><br/>9.1 Theory of SMS Fiber Structure 303<br/><br/>9.2 Characteristics of SMS Fiber Structure 307<br/><br/>9.2.1 Influence of the MMF Length 307<br/><br/>9.2.2 Influence of the Wavelength 311<br/><br/>9.2.3 Influence of Core Radius of the MMF 311<br/><br/>9.2.4 Influence of Refractive Indices of the MMF 313<br/><br/>9.3 Fiber Sensors Based on SMS Fiber Structure 319<br/><br/>9.3.1 Sensor Design and Fabrication 319<br/><br/>9.3.2 Refractive Index Sensors Based on SNS Fiber Structure 320<br/><br/>9.3.3 Temperature Sensors Based on SNS Structure 330<br/><br/>9.3.4 Magnetic Field Sensors Based on SNS or SMS Fiber Structure 331<br/><br/>9.3.4.1 Scalar Magnetic Field 331<br/><br/>9.3.4.2 Vector Magnetic Field 337<br/><br/>References 341<br/><br/>10 Whisper-Gallery-Mode-Based Hollow Microcavity Optical Fiber Sensing Technology 345<br/><br/>10.1 Whisper-Gallery-Mode Theory 345<br/><br/>10.2 Fabrication of Hollow Microcavity with Internal Air Pressure Control 349<br/><br/>10.2.1 Drawing System 350<br/><br/>10.2.2 Fabrication of Thin-Wall Micro-Capillary with Predetermined Radius 351<br/><br/>10.2.3 Fabrication of Hollow Microsphere with Wall-Thickness Control 355<br/><br/>10.3 Optical Fiber Magnetic Field Sensor Based on Thin-Wall Micro-Capillary and WGM 359<br/><br/>10.3.1 Magnetic Nanoparticle Assembly 359<br/><br/>10.3.2 Sensor Fabrication and Measurement 362<br/><br/>10.4 Optical Fiber High-Resolution Temperature Sensor Based on Hollow Microsphere and WGM 368<br/><br/>10.5 Ultraprecise Resonance Wavelength Determination Method 375<br/><br/>References 380<br/><br/>Volume 2<br/><br/>Preface xiii<br/><br/>Part II Special Discrete Optical Fiber Sensing and Network 383<br/><br/>11 Optical Fiber Intra-cavity Laser Gas Sensing Technology 385<br/><br/>12 Optical Fiber-Based Optical Coherence Tomography 437<br/><br/>13 Discrete Optical Fiber Sensing Network Technology 487<br/><br/>Part III Distributed Optical Fiber Sensing 537<br/><br/>14 Distributed Vibration Sensing Based on Dual Mach–Zehnder Interferometer 539<br/><br/>15 Regional Style Intelligent Perimeter Security Technique Based on Michelson Interferometer 595<br/><br/>16 Distributed Temperature Sensing Based on Raman Scattering 625<br/><br/>17 Distributed Acoustic Sensing Based on Optical Time-Domain Reflectometry 657<br/><br/>18 Distributed Sensing Based on Optical Frequency-Domain Reflectometry 709<br/><br/>19 Distributed Sensing Based on Brillouin Optical Correlation-Domain Analysis 771<br/><br/>Index 815 |
506 ## - RESTRICTIONS ON ACCESS NOTE |
Terms governing access |
Available to OhioLINK libraries. |
520 ## - SUMMARY, ETC. |
Summary, etc |
In Optical Fiber Sensing Technologies: Principles, Techniques, and Applications, a team of distinguished researchers delivers a comprehensive overview of all critical aspects of optical fiber sensing devices, systems, and technologies. The book moves from the basic principles of the technology to innovation methods and a broad range of applications, including Bragg grating sensing technology, intra-cavity laser gas sensing technology, optical coherence tomography, distributed vibration sensing, and acoustic sensing.<br/><br/>The accomplished authors bridge the gap between innovative new research in the field and practical engineering solutions, offering readers an unmatched source of practical, application-ready knowledge.- Provided by the publisher |
545 0# - BIOGRAPHICAL OR HISTORICAL DATA |
Biographical or historical note |
About the Author<br/>Tiegen Liu, PhD, is Professor in the School of Precision Instrument and Opto-Electronics Engineering at Tianjin University, China.<br/><br/>Junfeng Jiang, PhD, is Professor in the School of Precision Instrument and Opto-Electronics Engineering at Tianjin University, China.<br/><br/>Kun Liu, PhD, is Associate Professor in the School of Precision Instrument and Opto-Electronics Engineering at Tianjin University, China.<br/><br/>Shuang Wang, PhD, is Assistant Professor in the School of Precision Instrument and Opto-Electronics Engineering at Tianjin University, China |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Optical fiber detectors |
Authority record control number |
http://id.loc.gov/authorities/subjects/sh93001076 |
General subdivision |
Technological innovations. |
Authority record control number |
http://id.loc.gov/authorities/subjects/sh2001009095. |
655 #4 - INDEX TERM--GENRE/FORM |
Genre/form data or focus term |
Electronic books. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Jiang, Junfeng, |
Authority record control number |
http://id.loc.gov/authorities/names/n79062579 |
Relator term |
author. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Liu, Kun, |
Authority record control number |
http://id.loc.gov/authorities/names/n86071422 |
Relator term |
author. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Wang, Shuang, |
Authority record control number |
http://id.loc.gov/authorities/names/nr93045210 |
Relator term |
author. |
856 40 - ELECTRONIC LOCATION AND ACCESS |
Uniform Resource Identifier |
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527822454 |
Link text |
Full text is available at Wiley Online Library Click here to view |
942 ## - ADDED ENTRY ELEMENTS |
Source of classification or shelving scheme |
|
Item type |
EBOOK |