Smart sensors for environmental and medical applications / (Record no. 87352)

000 -LEADER
fixed length control field 11333cam a22004818i 4500
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240514123420.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m |o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr |||||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240514b ||||| |||| 00| 0 eng d
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2020011699
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119587422
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119587378
Qualifying information (epub)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119587354
Qualifying information (adobe pdf)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9781119587347
Qualifying information (hardback)
040 ## - CATALOGING SOURCE
Original cataloging agency DLC
Language of cataloging eng
Transcribing agency DLC
Description conventions rda
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
042 ## - AUTHENTICATION CODE
Authentication code pcc
050 00 - LIBRARY OF CONGRESS CALL NUMBER
Classification number R857.B54
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610.28/4
Edition number 23
245 00 - TITLE STATEMENT
Title Smart sensors for environmental and medical applications /
Statement of responsibility, etc Hamida Hallil, Hadi Heidari.
263 ## - PROJECTED PUBLICATION DATE
Projected publication date 2005
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, New Jersey :
Name of publisher, distributor, etc Wiley-IEEE Press,
Date of publication, distribution, etc 2020.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
490 0# - SERIES STATEMENT
Series statement IEEE press series on sensors
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note Table of Contents<br/>List of Contributors xi<br/><br/>Preface xiii<br/><br/>About the Editors xvii<br/><br/>1 Introduction 1<br/>Hamida Hallil and Hadi Heidari<br/><br/>1.1 Overview 1<br/><br/>1.2 Sensors: History and Terminology 2<br/><br/>1.2.1 Definitions and General Characteristics 3<br/><br/>1.2.2 Influence Quantities 5<br/><br/>1.3 Smart Sensors for Environmental and Medical Applications 6<br/><br/>1.4 Outline 8<br/><br/>Reference 9<br/><br/>2 Field Effect Transistor Technologies for Biological and Chemical Sensors 11<br/>Anne-Claire Salaün, France Le Bihan, and Laurent Pichon<br/><br/>2.1 Introduction 11<br/><br/>2.2 FET Gas Sensors 12<br/><br/>2.2.1 Materials 12<br/><br/>2.2.1.1 Inorganic Semiconductors 12<br/><br/>2.2.1.2 Semiconductor Polymers 12<br/><br/>2.2.1.3 Nanostructured Materials 13<br/><br/>2.2.2 FET as Gas Sensors 13<br/><br/>2.2.2.1 Pioneering FET Gas Sensors 13<br/><br/>2.2.2.2 OFET Gas Sensors 13<br/><br/>2.2.2.3 Nanowires-Based FET Gas Sensors 14<br/><br/>2.3 Ion-Sensitive Field Effect Transistors Based Devices 18<br/><br/>2.3.1 Classical ISFET 18<br/><br/>2.3.2 Other Technologies 19<br/><br/>2.3.2.1 EGFET: Extended Gate FET 20<br/><br/>2.3.2.2 SGFET: Suspended Gate FFETs 20<br/><br/>2.3.2.3 DGFET: Dual-Gate FETs 20<br/><br/>2.3.2.4 Water Gating FET or Electrolyte Gated FET 21<br/><br/>2.3.2.5 Other FETs 23<br/><br/>2.3.3 BioFETs 23<br/><br/>2.3.3.1 General Considerations 23<br/><br/>2.3.3.2 DNA BioFET 23<br/><br/>2.3.3.3 Protein BioFET 25<br/><br/>2.3.3.4 Cells 25<br/><br/>2.4 Nano-Field Effect Transistors 25<br/><br/>2.4.1 Fabrication of Nano-Devices 25<br/><br/>2.4.1.1 Silicon Nano-Devices 25<br/><br/>2.4.1.2 Carbon Nanotubes Nano-Devices 28<br/><br/>2.4.2 Detection of Biochemical Particles by Nanostructures-Based FET 28<br/><br/>2.4.2.1 SiNW pH Sensor 29<br/><br/>2.4.2.2 DNA Detection Using SiNW-Based Sensor 30<br/><br/>2.4.2.3 Protein Detection 32<br/><br/>2.4.2.4 Detection of Bacteria and Viruses 33<br/><br/>References 34<br/><br/>3 Mammalian Cell-Based Electrochemical Sensor for Label-Free Monitoring of Analytes 43<br/>Md. Abdul Kafi, Mst. Khudishta Aktar, and Hadi Heidari<br/><br/>3.1 Introduction 43<br/><br/>3.2 State-of-the-Art Cell Chip Design and Fabrication 45<br/><br/>3.3 Substrate Functionalization Strategies at the Cell–Electrode Interface 48<br/><br/>3.4 Electrochemical Characterization of Cellular Redox 49<br/><br/>3.5 Application of Cell-Based Sensor 51<br/><br/>3.6 Prospects and Challenges of Cell-Based Sensor 54<br/><br/>3.7 Conclusion 56<br/><br/>References 56<br/><br/>4 Electronic Tongues 61<br/>Flavio M. Shimizu, Maria Luisa Braunger, Antonio Riul, Jr., and Osvaldo N. Oliveira, Jr.<br/><br/>4.1 Introduction 61<br/><br/>4.2 General Applications of E-tongues 63<br/><br/>4.3 Bioelectronic Tongues (bETs) 65<br/><br/>4.4 New Design of Electrodes or Measurement Systems 66<br/><br/>4.5 Challenges and Outlook 73<br/><br/>Acknowledgments 73<br/><br/>References 74<br/><br/>5 Monitoring of Food Spoilage Using Polydiacetylene‐ and Liposome‐Based Sensors 81<br/>Max Weston, Federico Mazur, and Rona Chandrawati<br/><br/>5.1 Introduction 81<br/><br/>5.2 Polydiacetylene for Visual Detection of Food Spoilage 82<br/><br/>5.2.1 Contaminant Detection 83<br/><br/>5.2.2 Freshness Indicators 85<br/><br/>5.2.3 Challenges, Trends, and Industrial Applicability in the Food Industry 87<br/><br/>5.3 Liposomes 88<br/><br/>5.3.1 Pathogen Detection 88<br/><br/>5.3.1.1 Escherichia coli 88<br/><br/>5.3.1.2 Salmonella spp. 90<br/><br/>5.3.1.3 Other Bacterium 90<br/><br/>5.3.1.4 Viruses, Pesticides, and Toxins 91<br/><br/>5.3.2 Stability of Liposome‐Based Sensors 93<br/><br/>5.3.3 Industrial Applicability of Liposomes 93<br/><br/>5.4 Conclusions 94<br/><br/>References 94<br/><br/>6 Chemical Sensors Based on Metal Oxides 103<br/>K. S. Shalini Devi, Aadhav Anantharamakrishnan, Uma Maheswari Krishnan, and Jatinder Yakhmi<br/><br/>6.1 Introduction 103<br/><br/>6.2 Classes of MOx-Based Chemical Sensors 104<br/><br/>6.3 Synthesis of MOx Structures 104<br/><br/>6.4 Mechanism of Sensing by MOx 105<br/><br/>6.5 Factors Influencing Sensing Performance 106<br/><br/>6.6 Applications of MOx-Based Chemical Sensors 109<br/><br/>6.6.1 MOx Sensors for Environmental Monitoring 109<br/><br/>6.6.2 MOx Sensors in Clinical Diagnosis 112<br/><br/>6.6.3 MOx Sensors in Pharmaceutical Analysis 113<br/><br/>6.6.4 MOx-Based Sensors in Food Analysis 116<br/><br/>6.6.5 MOx Sensors in Agriculture 117<br/><br/>6.6.6 MOx Sensors for Hazard Analysis 117<br/><br/>6.6.7 Flexible Sensors Based on MOx 118<br/><br/>6.6.8 MOx-Based Lab-on-a-Chip Sensors 118<br/><br/>6.7 Concluding Remarks 119<br/><br/>Acknowledgment 119<br/><br/>References 120<br/><br/>7 Metal Oxide Gas Sensor Electronic Interfaces 129<br/>Zeinab Hijazi, Daniele D. Caviglia, and Maurizio Valle<br/><br/>7.1 General Introduction 129<br/><br/>7.1.1 Gas Sensing System 129<br/><br/>7.1.2 Gas Sensing Technologies 130<br/><br/>7.2 MOX Gas Sensors 131<br/><br/>7.2.1 Principle of Operation 131<br/><br/>7.2.2 Assessment of Available MOX-Based Gas Sensors 132<br/><br/>7.3 System Requirements and Literature Review 134<br/><br/>7.3.1 System Requirements 134<br/><br/>7.3.2 Wide Range Resistance Interface Review 136<br/><br/>7.4 Resistance to Time/Frequency Conversion Architecture 137<br/><br/>7.4.1 Electronic Circuit Description 137<br/><br/>7.4.2 Specifications for Each Building Block to Preserve High Linearity 138<br/><br/>7.4.2.1 Resistance to Current Conversion (R-to-I) 138<br/><br/>7.4.2.2 Switches 141<br/><br/>7.4.2.3 Current to Voltage Conversion (I-to-V) 141<br/><br/>7.4.2.4 Voltage to Time/Period (V-to-T) Conversion 141<br/><br/>7.5 Power Consumption 141<br/><br/>7.5.1 Power Consumption of MOX Gas Sensor 141<br/><br/>7.5.2 Low Power Operating Mode 142<br/><br/>7.5.3 Power Consumption at Circuit Level 142<br/><br/>7.6 Conclusion 143<br/><br/>References 143<br/><br/>8 Smart and Intelligent E-nose for Sensitive and Selective Chemical Sensing Applications 149<br/>Saakshi Dhanekar<br/><br/>8.1 Introduction 149<br/><br/>8.1.1 The Human Olfactory System 150<br/><br/>8.1.2 The Artificial Olfactory System 150<br/><br/>8.1.2.1 Sensor Array 151<br/><br/>8.1.2.2 Multivariate Data Analysis 152<br/><br/>8.1.2.3 Pattern Recognition Methods 153<br/><br/>8.2 What is an Electronic Nose? 154<br/><br/>8.3 Applications of E-nose 155<br/><br/>8.3.1 Key Applications of E-nose 155<br/><br/>8.3.2 E-nose for Chemical Sensing 155<br/><br/>8.4 Types of E-nose 157<br/><br/>8.5 Examples of E-nose 158<br/><br/>8.6 Improvements and Challenges 165<br/><br/>8.7 Conclusion 165<br/><br/>References 166<br/><br/>9 Odor Sensing System 173<br/>Takamichi Nakamoto and Muis Muthadi<br/><br/>9.1 Introduction 173<br/><br/>9.2 Odor Biosensor 174<br/><br/>9.3 Prediction of Odor Impression Using Deep Learning 176<br/><br/>9.4 Establishment of Odor‐Source Localization Strategy Using Computational Fluid Dynamics 181<br/><br/>9.4.1 Background of Odor‐Source Localization 181<br/><br/>9.4.2 Sensor Model with Response Delay 182<br/><br/>9.4.3 Simulation of Testing Environment Using CFD 183<br/><br/>9.4.4 Simulation of Biologically Inspired Odor‐Source Localization 185<br/><br/>9.4.4.1 Odor Plume Tracking Strategy 185<br/><br/>9.4.4.2 Result 186<br/><br/>9.4.5 Summary of Odor Source Localization Strategy 187<br/><br/>9.5 Conclusion 188<br/><br/>Acknowledgments 189<br/><br/>References 189<br/><br/>10 Microwave Chemical Sensors 193<br/>Hamida Hallil and Corinne Dejous<br/><br/>10.1 Interests of Electromagnetic Transducer Gas Sensors at Microwave Frequencies 193<br/><br/>10.2 Operating Principle 193<br/><br/>10.2.1 Electromagnetic Transducers 193<br/><br/>10.2.2 The Case of Microwave Transducers 195<br/><br/>10.3 Theory of Microwave Transducers: Design, Methodology, and Approach 196<br/><br/>10.4 Microwave Structure‐Based Chemical Sensor 200<br/><br/>10.4.1 Manufacturing Techniques 200<br/><br/>10.4.2 Chemical Microwave Sensors 200<br/><br/>10.4.3 Wireless Interrogation Schemes 204<br/><br/>10.5 Multivariate Data Analysis and Machine Learning for Targeted Species Identification 207<br/><br/>10.6 Conclusion and Prospects 209<br/><br/>Acknowledgments 210<br/><br/>References 210<br/><br/>Index 217<br/><br/>
520 ## - SUMMARY, ETC.
Summary, etc "This book presents a comprehensive overview of chemical sensors, ranging from the choice of material to the sensor validation and through their modeling and simulation and manufacturing technology processes, which have been developed so far. It addresses the process of data collection by intelligent techniques such as deep learning, multivariate analysis, etc. The book incorporates different types of smart chemical sensors and discusses each under a common set of sub-sections. In this way readers are educated on the advantages and disadvantages of the relevant transducers depending on the design, transduction mode and final applications. The book covers all major aspects of the primary constituents of the field of smart chemical sensors including working principle and related theory, sensor materials, classification of respective transducer type, relevant fabrication processes, methods for data analysis and suitable application"--
Assigning source Provided by publisher.
545 0# - BIOGRAPHICAL OR HISTORICAL DATA
Biographical or historical note About the Author<br/>Hamida Hallil, PhD., is an Associate Professor in electrical engineering at the Bordeaux University and affiliated with the laboratory of Integration: from Material to Systems. Her current research interests include the design of innovative devices and sensors using electromagnetic and acoustic transduction modes. Since 2018, she is assigned as research scientist at CNRS International -NTU-Thales Research Alliance in Singapore and her work focuses on the development of 2D based acoustic devices and microwave sensors. She has co-authored over 60 peer-reviewed journal articles and conferences. She serves on the organizing or technical committees of several international conferences and French organisations.<br/><br/>Hadi Heidari is an Assistant Professor (Lecturer) in Electronics and Nanoscale Engineering and lead of the Microelectronics Lab (meLAB) at the University of Glasgow, UK. His research focuses on microelectronics and sensors for wearable and implantable devices. He has authored over 140 articles in top-tier peer reviewed journals and in international conferences. He is an IEEE Senior Member, an Associate Editor for 4 Journals and the General Chair of IEEE ICECS 2020 Conference. He is member of the IEEE Circuits and Systems Society Board of Governors, and Member-at-Large in IEEE Sensors Council. He has grant portfolio of +£1 million funded by major research councils and funding organizations including European Commission, UK's EPSRC, Royal Society and Scottish Funding Council.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on print version record and CIP data provided by publisher; resource not viewed.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Biosensors.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Medical instruments and apparatus.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Hallil, Hamida,
Dates associated with a name 1981-
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Heidari, Hadi,
Relator term editor.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781119587422
Link text Full text is available at Wiley Online Library Click here to view
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 7
b cbc
c orignew
d 1
e ecip
f 20
g y-gencatlg
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Source of acquisition Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2024-05-14 ALBASA Consortium 52242 610.284 Sm27 2020 CL-52242 2024-05-14 2024-05-14 EBOOK