Surface modification of polymers : (Record no. 87336)

000 -LEADER
fixed length control field 15816nam a22004817a 4500
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240512180641.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr aa aaaaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240512b ||||| |||| 00| 0 eng d
015 ## - NATIONAL BIBLIOGRAPHY NUMBER
National bibliography number GBC003481
Source bnb
016 7# - NATIONAL BIBLIOGRAPHIC AGENCY CONTROL NUMBER
Record control number 019666558
Source Uk
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783527345410
Qualifying information hardcover
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783527345410
Qualifying information hardcover
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9783527819249
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9783527819218
Qualifying information electronic book
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)on1140149627
040 ## - CATALOGING SOURCE
Original cataloging agency UKMGB
Language of cataloging eng
Description conventions rda
Transcribing agency UKMGB
Modifying agency OCLCO
-- OCLCF
-- FTU
-- BDX
-- OCLCO
-- YDX
-- OCLCO
-- DLC
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
042 ## - AUTHENTICATION CODE
Authentication code lccopycat
050 00 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QD381.9.S97
Item number S875 2020
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 547/.70453
Edition number 23
245 00 - TITLE STATEMENT
Title Surface modification of polymers :
Remainder of title methods and applications /
Statement of responsibility, etc edited by Jean Pinson and Damien Thiry.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Weinheim, Germany :
Name of publisher, distributor, etc Wiley-VCH,
Date of publication, distribution, etc [2020]
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (xv, 441 pages) :
Other physical details illustrations (some color)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note Table of Contents<br/>Introduction xiii<br/><br/>1 The Surface of Polymers 1<br/>Rosica Mincheva and Jean-Marie Raquez<br/><br/>1.1 Introduction 1<br/><br/>1.2 The Surface of Polymers 2<br/><br/>1.2.1 Definition of a Polymer Surface 2<br/><br/>1.2.2 Factors Determining a Polymer Surface 3<br/><br/>1.2.2.1 Internal Factors 3<br/><br/>1.2.2.2 External Factors 4<br/><br/>1.2.3 The Polymer Surface at a Microscopic Level 11<br/><br/>1.3 Properties of Polymer Surfaces at Interfaces 12<br/><br/>1.3.1 Surface Wettability 13<br/><br/>1.3.2 Surface Thermal Properties 15<br/><br/>1.3.2.1 Surface Tg 15<br/><br/>1.3.2.2 Surface Crystallization 17<br/><br/>1.4 Experimental Methods for Investigating Polymer Surfaces at Interfaces 21<br/><br/>1.5 Conclusions 21<br/><br/>References 21<br/><br/>Part I Gas Phase Methods 31<br/><br/>2 Surface Treatment of Polymers by Plasma 33<br/>Pieter Cools, Laura Astoreca, Parinaz Saadat Esbah Tabaei, Monica Thukkaram, Herbert De Smet, Rino Morent, and Nathalie De Geyter<br/><br/>2.1 Plasma: An Introduction 33<br/><br/>2.1.1 Definition 33<br/><br/>2.1.2 Thermal Versus Nonthermal Plasma 34<br/><br/>2.1.3 The Formation of Nonthermal Plasma 35<br/><br/>2.1.4 Plasma Generation and Operating Conditions 37<br/><br/>2.1.4.1 Different Methods of Plasma Generation 37<br/><br/>2.1.4.2 DC Discharges 38<br/><br/>2.1.4.3 DC Pulsed Discharges 38<br/><br/>2.1.4.4 RF and MW Discharges 38<br/><br/>2.1.4.5 Dielectric Barrier Discharge (DBD) 39<br/><br/>2.1.4.6 Atmospheric Pressure Plasma Jet (APPJ) 40<br/><br/>2.1.4.7 Gliding Arc 41<br/><br/>2.1.5 Nonthermal Plasma for Polymer Surface Treatment 41<br/><br/>2.2 Applications of Plasma Surface Activation of Polymers 43<br/><br/>2.2.1 Adhesion Improvement 43<br/><br/>2.2.2 Packaging and Textile Applications 47<br/><br/>2.2.2.1 Printability Enhancement 47<br/><br/>2.2.2.2 Dyeability Improvement 47<br/><br/>2.2.2.3 Mass Transfer Changes 49<br/><br/>2.2.3 Biomedical Applications 50<br/><br/>2.2.3.1 Inert Synthetic Polymers 50<br/><br/>2.2.3.2 Biodegradable Polymers 53<br/><br/>2.3 Plasma Grafting 56<br/><br/>2.4 Hydrophobic Recovery 59<br/><br/>2.5 Conclusion 61<br/><br/>References 61<br/><br/>3 A Joint Mechanistic Description of Plasma Polymers Synthesized at Low and Atmospheric Pressure 67<br/>Damien Thiry, François Reniers, and Rony Snyders<br/><br/>3.1 Introduction 67<br/><br/>3.2 Plasma Polymerization 69<br/><br/>3.2.1 Plasma Fundamentals 70<br/><br/>3.2.2 Growth Mechanism 72<br/><br/>3.3 Probing the Plasma Chemistry 83<br/><br/>3.3.1 Optical Emission Spectroscopy 84<br/><br/>3.3.2 Mass Spectrometry 87<br/><br/>3.4 Conclusions 96<br/><br/>References 97<br/><br/>4 Organic Surface Functionalization by Initiated CVD (iCVD) 107<br/>Karen K. Gleason<br/><br/>4.1 Introduction 107<br/><br/>4.2 Mechanistic Principles of iCVD 108<br/><br/>4.3 Functional, Surface Reactive, and Responsive Organic Films Prepared by iCVD 113<br/><br/>4.4 Interfacial Engineering with iCVD: Adhesion and Grafting 127<br/><br/>4.5 Reactors for Synthesizing Organic Films by iCVD 128<br/><br/>4.6 Summary 129<br/><br/>References 130<br/><br/>5 Atomic Layer Deposition and Vapor Phase Infiltration 135<br/>Mark D. Losego and Qing Peng<br/><br/>5.1 Atomic Layer Deposition Versus Vapor Phase Infiltration 135<br/><br/>5.2 Atomic Layer Deposition (ALD) on Polymers 138<br/><br/>5.2.1 Chemical Mechanisms of ALD 138<br/><br/>5.2.2 ALD on Polymers with Dense –OH Groups: Cellulose and Poly(vinyl alcohol) 140<br/><br/>5.2.3 ALD onto “Unreactive” Polymer Substrates 141<br/><br/>5.2.4 Applications of ALD Coated Polymers 143<br/><br/>5.2.4.1 ALD Coated Cotton Fibers 143<br/><br/>5.2.4.2 Applications for ALD Coatings on Other Polymers 144<br/><br/>5.3 Vapor Phase Infiltration of Polymers 145<br/><br/>5.3.1 Processing Thermodynamics and Kinetics of VPI 145<br/><br/>5.3.1.1 Thermodynamics of Vapor-Phase Precursor Sorption into Polymers 145<br/><br/>5.3.1.2 Kinetics of Precursor Diffusion During VPI 147<br/><br/>5.3.1.3 VPI Processes Incorporating Both Penetrant Diffusion and Reaction 148<br/><br/>5.3.1.4 Measuring the Thermodynamics and Kinetics of a VPI Process 149<br/><br/>5.3.2 Applications of Vapor Phase Infiltrated Polymers 150<br/><br/>5.3.2.1 Altering Mechanical Performance 150<br/><br/>5.3.2.2 Contrasting Agent for Multi-phase Polymer Imaging 152<br/><br/>5.3.2.3 Improved Chemical Resistance 152<br/><br/>5.3.2.4 Patterning for Microsystems 153<br/><br/>5.3.2.5 Vapor Diffusion Barriers 154<br/><br/>5.3.2.6 Conducting Polymers and Hybrid Photovoltaic Cells 154<br/><br/>5.3.2.7 Other Application Spaces 155<br/><br/>5.4 Summary and Future Outlook for ALD and VPI on Polymers 156<br/><br/>References 156<br/><br/>Part II UV and Related Methods 161<br/><br/>6 Photoinduced Functionalization on Polymer Surfaces 163<br/>Kazuhiko Ishihara<br/><br/>6.1 Introduction 163<br/><br/>6.2 Improving the Surface Properties of Polymeric Materials by Photoirradiation 165<br/><br/>6.3 Photoreaction of Polymers with Other Polymers 166<br/><br/>6.3.1 Photoinduced Chemical Reaction Between Polymers 166<br/><br/>6.3.2 Photoinduced Grafting at the Polymer Surface 168<br/><br/>6.3.3 Preparation of High-functionality Surface by Photoinduced Graft Polymerization 169<br/><br/>6.3.4 Application of Photoinduced Grafting Process to Artificial Organs 172<br/><br/>6.4 Self-initiated Photoinduced Graft Polymerization 174<br/><br/>6.4.1 Poly(ether ketone) as Photoinitiator for Graft Polymerization 174<br/><br/>6.4.2 Effects of Inorganic Salts on Photoinduced Graft Polymerization in an Aqueous System 178<br/><br/>6.5 Conclusion and Future Perspective 180<br/><br/>References 181<br/><br/>7 𝜸-Rays and Ions Irradiation 185<br/>Alejandro Ramos-Ballesteros, Victor H. Pino-Ramos, Felipe López-Saucedo,Guadalupe G. Flores-Rojas, and Emilio Bucio<br/><br/>7.1 𝛾-Rays and Ions Irradiation 185<br/><br/>7.2 Ionizing Radiation Sources 186<br/><br/>7.3 𝛾-Ray-Induced Modifications 186<br/><br/>7.3.1 Grafting Modifications 186<br/><br/>7.3.1.1 Radiation-induced Grafting Methods 188<br/><br/>7.3.1.2 Ionic Grafting 192<br/><br/>7.3.1.3 RAFT-graft Polymerization 193<br/><br/>7.3.1.4 Applications 194<br/><br/>7.3.2 Cross-linking 197<br/><br/>7.3.2.1 𝛾-Ray Cross-linking Modifications 199<br/><br/>7.3.2.2 Cross-linking with Additives 200<br/><br/>7.3.2.3 Industrial Applications 201<br/><br/>7.4 Heavy Ion-Induced Modifications 202<br/><br/>7.4.1 Polymers 204<br/><br/>7.5 Conclusions 205<br/><br/>Acknowledgments 206<br/><br/>References 206<br/><br/>Part III Chemical Methods 211<br/><br/>8 Functionalization of Polymers by Hydrolysis, Aminolysis, Reduction, Oxidation, and Some Related Reactions 213<br/>Dardan Hetemi and Jean Pinson<br/><br/>8.1 Hydrolysis and Aminolysis 213<br/><br/>8.1.1 PLA and Polyesters 213<br/><br/>8.1.2 Hydrolysis 214<br/><br/>8.1.3 Aminolysis 214<br/><br/>8.1.4 PCL 215<br/><br/>8.1.5 PET 216<br/><br/>8.1.6 PMMA 216<br/><br/>8.1.7 Cellulose 217<br/><br/>8.2 Chemical Reduction 220<br/><br/>8.2.1 PEEK 220<br/><br/>8.2.2 PET 225<br/><br/>8.2.3 PMMA 227<br/><br/>8.2.4 PC 227<br/><br/>8.2.5 PTFE 229<br/><br/>8.3 Chemical Oxidation 231<br/><br/>8.4 Non-covalent Surface Modification 234<br/><br/>8.5 Conclusion 235<br/><br/>References 236<br/><br/>9 Functionalization of Polymers by Reaction of Radicals, Nitrenes, and Carbenes 241<br/>Jean Pinson<br/><br/>9.1 Functionalization of Polymers by Reaction of Radicals 241<br/><br/>9.1.1 Peroxides as Radical Initiators 241<br/><br/>9.1.2 Hydrogen Peroxides as Radical Initiator 244<br/><br/>9.1.3 Persulfates as Radical Initiators 246<br/><br/>9.1.4 Oxygen as Radical Initiator 248<br/><br/>9.1.5 Azo Compounds as Radical Initiator 249<br/><br/>9.1.6 Diazonium Salts as Radical Initiator 250<br/><br/>9.1.6.1 Polypyrrole 251<br/><br/>9.1.6.2 Polyaniline 251<br/><br/>9.1.6.3 Poly(3,4-ethylenedioxythiophene)–Poly(styrenesulfonate) (PEDOT:PSS) 253<br/><br/>9.1.6.4 Polymethylmethacrylate (PMMA) 254<br/><br/>9.1.6.5 Polypropylene (PP) 255<br/><br/>9.1.6.6 Polyvinyl Chloride 255<br/><br/>9.1.6.7 Cyclic Olefin Copolymers (COC) 256<br/><br/>9.1.6.8 Polyetheretherketone (PEEK) 256<br/><br/>9.1.6.9 PET (Polyethylene Terephthalate) 257<br/><br/>9.1.6.10 Polysulfone Membranes 258<br/><br/>9.1.6.11 Cation Exchange Membranes 258<br/><br/>9.1.6.12 Fluoro Polymers 259<br/><br/>9.1.6.13 Natural Polymers 260<br/><br/>9.1.7 Alkyl Halides as Radical Initiator 260<br/><br/>9.2 Surface Modification of Polymers with Carbenes and Nitrenes 260<br/><br/>9.2.1 Carbenes 261<br/><br/>9.2.2 Nitrenes 264<br/><br/>9.3 Conclusion 267<br/><br/>References 268<br/><br/>10 Surface Modification of Polymeric Substrates with Photo- and Sonochemically Designed Macromolecular Grafts 273<br/>Fatima Mousli, Youssef Snoussi, Ahmed M. Khalil, Khouloud Jlassi, Ahmed Mekki, and Mohamed M. Chehimi<br/><br/>10.1 Introduction 273<br/><br/>10.1.1 Context 273<br/><br/>10.1.2 Scope of the Chapter 274<br/><br/>10.2 Surface-confined Radical Photopolymerization of Insulating Vinylic and Other Monomers 274<br/><br/>10.2.1 Type I and Type II Photoinitiation Systems 275<br/><br/>10.2.2 Simultaneous Photoinduced Electron Transfer and Free Radical Polymerization Confined to Surfaces 282<br/><br/>10.2.3 Surface-initiated Photoiniferter 284<br/><br/>10.2.4 “Brushing Up from Anywhere” Using Polydopamine Thin Adhesive Coatings 284<br/><br/>10.2.5 Recent Trends in Surface-confined Photopolymerization (CRP) 287<br/><br/>10.3 Surface-confined Photopolymerization of Conjugated Monomers 289<br/><br/>10.3.1 Polypyrrole 290<br/><br/>10.3.1.1 Mechanisms of Photopolymerization of Pyrrole 290<br/><br/>10.3.1.2 Substrates for in Situ Photoinduced Polymerization of Pyrrole and Potential Applications 291<br/><br/>10.3.2 Polyaniline 294<br/><br/>10.3.2.1 Mechanisms of Photopolymerization of Aniline 294<br/><br/>10.3.2.2 Substrates for in Situ Photoinduced Polymerization of Aniline 298<br/><br/>10.4 Surface-confined Sonochemical Polymerization of Conjugated and Vinylic Monomers 298<br/><br/>10.4.1 Insights into Sonochemistry: Origin of the Phenomenon and Mechanism of Polymer Synthesis 298<br/><br/>10.4.2 Ultrasound-assisted Polymerization or Polymer Deposition over Organic Polymeric Substrates 303<br/><br/>10.4.2.1 Sonopolymerization 303<br/><br/>10.4.2.2 Ultrasonic Spray 303<br/><br/>10.4.3 Sonopolymerization over Miscellaneous Types of Surface: Inorganic Polymeric Substrates 305<br/><br/>10.5 Conclusion 306<br/><br/>Acknowledgments 307<br/><br/>References 307<br/><br/>Part IV Applications 317<br/><br/>11 Surface Modification of Nanoparticles: Methods and Applications 319<br/>Gopikrishna Moku, Vijayagopal Raman Gopalsamuthiram, Thomas R. Hoye, and Jayanth Panyam<br/><br/>11.1 Introduction 319<br/><br/>11.2 Polymers Used in the Preparation of Nanoparticles 320<br/><br/>11.3 Common Biodegradable Polymers for Nanoparticle Fabrication 320<br/><br/>11.3.1 Albumin 320<br/><br/>11.3.2 Alginate 320<br/><br/>11.3.2.1 Chitosan 321<br/><br/>11.3.3 Gelatin 322<br/><br/>11.3.4 Poly(lactide-co-glycolide) (PLGA) and Polylactide (PLA) 322<br/><br/>11.3.5 Poly-ε-caprolactone (PCL) 323<br/><br/>11.4 Fabrication of Nanoparticles 323<br/><br/>11.5 Linker Chemistry for Attaching Ligands on Polymeric Nanoparticles 324<br/><br/>11.5.1 Hydrazone Bond Formation 327<br/><br/>11.5.2 Non-covalent Attachment 328<br/><br/>11.6 Surface-functionalized Polymeric Nanoparticles for Drug Delivery Applications 328<br/><br/>11.6.1 Polysaccharides 329<br/><br/>11.6.2 Lipids 329<br/><br/>11.6.3 Aptamers 332<br/><br/>11.6.4 Antibodies 332<br/><br/>11.6.5 Peptides 333<br/><br/>11.6.5.1 Polyethylene Glycol (PEG) 334<br/><br/>11.7 Characterization of Surface-modified Nanoparticles 336<br/><br/>11.7.1 Particle Size 336<br/><br/>11.7.2 Dynamic Light Scattering (DLS) 337<br/><br/>11.7.3 Scanning Electron Microscopy (SEM) 337<br/><br/>11.7.4 Transmission Electron Microscopy (TEM) 339<br/><br/>11.7.5 Surface Charge 339<br/><br/>11.7.6 Surface Hydrophobicity 340<br/><br/>11.7.7 Fourier Transform IR (FTIR) Spectroscopy 341<br/><br/>11.8 Summary/Conclusion 342<br/><br/>References 342<br/><br/>12 Surface Modification of Polymers for Food Science 347<br/>Valentina Siracusa<br/><br/>12.1 Introduction 347<br/><br/>12.2 Physical and Chemical Methods 348<br/><br/>12.2.1 Gas Phase and Radiation 349<br/><br/>12.2.1.1 Gas Phase 349<br/><br/>12.2.1.2 Radiation 350<br/><br/>12.2.2 Liquid and Bulk Phase Methods 352<br/><br/>12.2.2.1 Adsorption Methods 352<br/><br/>12.2.2.2 Desorption Method 352<br/><br/>12.2.3 Interfacial Adhesion of Polymers 353<br/><br/>12.2.4 Grafting and Polymerization 354<br/><br/>12.3 Mechanical Method 354<br/><br/>12.4 Biological Method 354<br/><br/>12.5 Surface Modification of Polymer for Food Packaging 355<br/><br/>12.5.1 Applications 355<br/><br/>12.5.1.1 Surface Sterilization 355<br/><br/>12.5.1.2 Printing 355<br/><br/>12.5.1.3 Mass Transfer 356<br/><br/>12.5.2 Polymers 356<br/><br/>12.6 Conclusion 358<br/><br/>References 359<br/><br/>13 Surface Modification of Water Purification Membranes 363<br/>Anthony Szymczyk, Bart van der Bruggen, and Mathias Ulbricht<br/><br/>13.1 Introduction 363<br/><br/>13.2 Irradiation-Based Direct Polymer Modification 365<br/><br/>13.2.1 Plasma Treatment 365<br/><br/>13.2.2 UV Irradiation 366<br/><br/>13.2.3 Irradiation with High Energy Sources 368<br/><br/>13.3 Coatings 369<br/><br/>13.3.1 Coatings from Gas Phase 369<br/><br/>13.3.2 Coatings from Wet Phase 371<br/><br/>13.4 Grafting Methods 378<br/><br/>13.4.1 Grafting-to 378<br/><br/>13.4.2 Grafting-from 381<br/><br/>13.4.2.1 Plasma-Induced Graft Polymerization 381<br/><br/>13.4.2.2 UV-Induced Grafting 383<br/><br/>13.4.2.3 Grafting Induced by High Energy Radiations 385<br/><br/>13.4.2.4 Grafting Initiated by Chemical/Electrochemical Means 385<br/><br/>13.4.3 Controlled Grafting-from 389<br/><br/>13.5 Conclusion 392<br/><br/>References 394<br/><br/>14 Surface Modification of Polymer Substrates for Biomedical Applications 399<br/>P. Slepicka, N. Slepičková Kasálková, Z. Kolská, and V. Švorčík<br/><br/>14.1 Introduction 399<br/><br/>14.2 Plasma Treatment 400<br/><br/>14.3 Laser Modification 411<br/><br/>14.3.1 Interaction with Cells 411<br/><br/>14.3.2 Sensor Construction 412<br/><br/>14.4 Conclusion 416<br/><br/>Acknowledgments 417<br/><br/>References 417<br/><br/>Index 427<br/>
520 ## - SUMMARY, ETC.
Summary, etc Surface Modification of Polymers is an essential guide to the myriad methods that can be employed to modify and functionalize the surfaces of polymers. The functionalization of polymer surfaces is often required for applications in sensors, membranes, medicinal devices, and others. The contributors?noted experts on the topic?describe the polymer surface in detail and discuss the internal and external factors that influence surface properties.<br/><br/>This comprehensive guide to the most important methods for the introduction of new functionalities is an authoritative resource for everyone working in the field. This book explores many applications, including the plasma polymerization technique, organic surface functionalization by initiated chemical vapor deposition, photoinduced functionalization on polymer surfaces, functionalization of polymers by hydrolysis, aminolysis, reduction, oxidation, surface modification of nanoparticles, and many more. Inside, readers will find information on various applications in the biomedical field, food science, and membrane science.
545 0# - BIOGRAPHICAL OR HISTORICAL DATA
Biographical or historical note About the Author<br/>Jean Pinson, PhD, is Professor Emeritus of the Université Paris Diderot. He is interested in the functionalization and modification of polymer surfaces and the surface chemistry of diazonium salts.<br/><br/>Damien Thiry, PhD, is Senior Researcher at the University of Mons (Chimie des Interactions Plasma-Surface (ChIPS)), Belgium.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Polymers
General subdivision Surfaces.
650 #6 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Polymères
General subdivision Surfaces.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Polymers
General subdivision Surfaces.
Source of heading or term fast
Authority record control number (OCoLC)fst01070649
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Pinson, Jean,
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Thiry, Damien,
Relator term editor.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text ebook version :
International Standard Book Number 9783527819232
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9783527819249
Link text Full is text available at Wiley Online Library Click here to view
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 7
b cbc
c copycat
d 2
e ncip
f 20
g y-gencatlg
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2024-05-12 52327 547.70453 Su773 2020 52327 2024-05-12 2024-05-12 EBOOK