000 -LEADER |
fixed length control field |
11880nam a22003617a 4500 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
CITU |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20220328140053.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
220328b ||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119994404 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119957447 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9780470686362 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
0470686367 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9780470667170 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
0470667176 |
041 ## - LANGUAGE CODE |
Language code of text/sound track or separate title |
eng |
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
621.3 |
Edition number |
23 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Preferred name for the person |
Kirtley, James L. |
Relator term |
author |
245 ## - TITLE STATEMENT |
Title |
Electric Power Principles: |
Remainder of title |
Sources, Conversion, Distribution and Use / |
Statement of responsibility, etc |
James L. Kirtley |
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Place of publication, distribution, etc |
Chichester, West Sussex : |
Name of publisher, distributor, etc |
Wiley, |
Date of publication, distribution, etc |
c2010 |
300 ## - PHYSICAL DESCRIPTION |
Extent |
1 online resource |
336 ## - CONTENT TYPE |
Content type term |
text |
Content type code |
txt |
Source |
rdacontent |
337 ## - MEDIA TYPE |
Media type term |
computer |
Media type code |
c |
Source |
rdamedia |
338 ## - CARRIER TYPE |
Carrier type term |
online resource |
Carrier type code |
cr |
Source |
rdacarrier |
500 ## - GENERAL NOTE |
General note |
ABOUT THE AUTHOR<br/>Professor James Kirtley is currently teaching a course on electric power systems to both undergaraduate and graduate students at MIT (Massachusetts Institue of Technology). He has been a fellow of IEEE since 1990, was awarded the IEEE Third Millenium Medal in 2000 and the Nikola Tesla Award in 2002. Since 2007 Professor Kirtley has been associate editor of IEEE Power Engineering Society’s Transactions on Energy Conversion. He lectures outside the university, writes exensively for journals and holds 23 patents. Amongst other areas, his research interests include electric ships, superconducting generator, intelligent monitoring of equipment and systems, and advanced motor/generator machines for kinetic energy storage systems. |
505 0# - CONTENTS |
Formatted contents note |
TABLE OF CONTENTS<br/>Preface xi<br/>1 Electric Power Systems 1<br/><br/>1.1 Electric Utility Systems 2<br/><br/>1.2 Energy and Power 3<br/><br/>1.2.1 Basics and Units 3<br/><br/>1.3 Sources of Electric Power 3<br/><br/>1.3.1 Heat Engines 4<br/><br/>1.3.2 Power Plants 5<br/><br/>1.3.3 Nuclear Power Plants 8<br/><br/>1.3.4 Hydroelectric Power 9<br/><br/>1.3.5 Wind Turbines 10<br/><br/>1.3.6 Solar Power Generation 12<br/><br/>1.4 Electric Power Plants and Generation 15<br/><br/>1.5 Problems 15<br/><br/>2 AC Voltage, Current and Power 17<br/><br/>2.1 Sources and Power 17<br/><br/>2.1.1 Voltage and Current Sources 17<br/><br/>2.1.2 Power 18<br/><br/>2.1.3 Sinusoidal Steady State 18<br/><br/>2.1.4 Phasor Notation 19<br/><br/>2.1.5 Real and Reactive Power 19<br/><br/>2.2 Resistors, Inductors and Capacitors 21<br/><br/>2.2.1 Reactive Power and Voltage 22<br/><br/>2.2.2 Reactive Power Voltage Support 23<br/><br/>2.3 Problems 26<br/><br/>3 Transmission Lines 31<br/><br/>3.1 Modeling: Telegrapher’s Equations 32<br/><br/>3.1.1 Traveling Waves 33<br/><br/>3.1.2 Characteristic Impedance 33<br/><br/>3.1.3 Power 35<br/><br/>3.1.4 Line Terminations and Reflections 35<br/><br/>3.1.5 Sinusoidal Steady State 40<br/><br/>3.2 Problems 42<br/><br/>4 Polyphase Systems 45<br/><br/>4.0.1 Two-Phase Systems 45<br/><br/>4.1 Three-Phase Systems 47<br/><br/>4.2 Line–Line Voltages 49<br/><br/>4.2.1 Example: Wye and Delta Connected Loads 50<br/><br/>4.2.2 Example: Use of Wye–Delta for Unbalanced Loads 52<br/><br/>4.3 Problems 54<br/><br/>5 Electrical and Magnetic Circuits 57<br/><br/>5.1 Electric Circuits 57<br/><br/>5.1.1 Kirchoff ’s Current Law (KCL) 57<br/><br/>5.1.2 Kirchoff ’s Voltage Law (KVL) 58<br/><br/>5.1.3 Constitutive Relationship: Ohm’s Law 58<br/><br/>5.2 Magnetic Circuit Analogies 60<br/><br/>5.2.1 Analogy to KCL 60<br/><br/>5.2.2 Analogy to KVL: Magnetomotive Force 61<br/><br/>5.2.3 Analogy to Ohm’s Law: Reluctance 61<br/><br/>5.2.4 Simple Case 62<br/><br/>5.2.5 Flux Confinement 63<br/><br/>5.2.6 Example: C-Core 63<br/><br/>5.2.7 Example: Core with Different Gaps 64<br/><br/>5.3 Problems 66<br/><br/>6 Transformers 71<br/><br/>6.1 Single-phase Transformers 71<br/><br/>6.1.1 Ideal Transformer 72<br/><br/>6.1.2 Deviations from Ideal Transformer 73<br/><br/>6.2 Three-Phase Transformers 75<br/><br/>6.2.1 Example 77<br/><br/>6.3 Problems 80<br/><br/>7 Polyphase Lines and Single-Phase Equivalents 85<br/><br/>7.1 Polyphase Transmission and Distribution Lines 85<br/><br/>7.1.1 Example 87<br/><br/>7.2 Introduction To Per-Unit Systems 88<br/><br/>7.2.1 Normalization Of Voltage and Current 88<br/><br/>7.2.2 Three-Phase Systems 90<br/><br/>7.2.3 Networks with Transformers 90<br/><br/>7.2.4 Transforming from one base to another 91<br/><br/>7.2.5 Example: Fault Study 92<br/><br/>7.3 Appendix: Inductances of Transmission Lines 94<br/><br/>7.3.1 Single Wire 94<br/><br/>7.3.2 Mutual Inductance 96<br/><br/>7.3.3 Bundles of Conductors 96<br/><br/>7.3.4 Transposed Lines 97<br/><br/>7.4 Problems 98<br/><br/>8 Electromagnetic Forces and Loss Mechanisms 103<br/><br/>8.1 Energy Conversion Process 103<br/><br/>8.1.1 Principle of Virtual Work 104<br/><br/>8.1.2 Coenergy 108<br/><br/>8.2 Continuum Energy Flow 110<br/><br/>8.2.1 Material Motion 111<br/><br/>8.2.2 Additional Issues in Energy Methods 112<br/><br/>8.2.3 Electric Machine Description 116<br/><br/>8.2.4 Field Description of Electromagnetic Force: The Maxwell Stress Tensor 118<br/><br/>8.2.5 Tying the MST and Poynting Approaches together 120<br/><br/>8.3 Surface Impedance of Uniform Conductors 124<br/><br/>8.3.1 Linear Case 124<br/><br/>8.3.2 Iron 128<br/><br/>8.3.3 Magnetization 128<br/><br/>8.3.4 Saturation and Hysteresis 129<br/><br/>8.3.5 Conduction, Eddy Currents and Laminations 131<br/><br/>8.3.6 Eddy Currents in Saturating Iron 133<br/><br/>8.4 Semi-Empirical Method of Handling Iron Loss 136<br/><br/>8.5 Problems 139<br/><br/>9 Synchronous Machines 145<br/><br/>9.1 Round Rotor Machines: Basics 146<br/><br/>9.1.1 Operation with a Balanced Current Source 147<br/><br/>9.1.2 Operation with a Voltage Source 147<br/><br/>9.2 Reconciliation of Models 150<br/><br/>9.2.1 Torque Angles 150<br/><br/>9.3 Per-Unit Systems 151<br/><br/>9.4 Normal Operation 152<br/><br/>9.4.1 Capability Diagram 153<br/><br/>9.4.2 Vee Curve 153<br/><br/>9.5 Salient Pole Machines: Two-Reaction Theory 154<br/><br/>9.6 Synchronous Machine Dynamics 157<br/><br/>9.7 Synchronous Machine Dynamic Model 159<br/><br/>9.7.1 Electromagnetic Model 159<br/><br/>9.7.2 Park’s Equations 160<br/><br/>9.7.3 Power and Torque 164<br/><br/>9.7.4 Per-Unit Normalization 164<br/><br/>9.7.5 Equivalent Circuits 167<br/><br/>9.7.6 Transient Reactances and Time Constants 168<br/><br/>9.8 Statement of Simulation Model 169<br/><br/>9.8.1 Example: Transient Stability 170<br/><br/>9.8.2 Equal Area Transient Stability Criterion 170<br/><br/>9.9 Appendix: Transient Stability Code 173<br/><br/>9.10 Appendix: Winding Inductance Calculation 176<br/><br/>9.10.1 Pitch Factor 180<br/><br/>9.10.2 Breadth Factor 180<br/><br/>9.11 Problems 182<br/><br/>10 System Analysis and Protection 185<br/><br/>10.1 The Symmetrical Component Transformation 185<br/><br/>10.2 Sequence Impedances 188<br/><br/>10.2.1 Balanced Transmission Lines 188<br/><br/>10.2.2 Balanced Load 189<br/><br/>10.2.3 Possibly Unbalanced Loads 190<br/><br/>10.2.4 Unbalanced Sources 191<br/><br/>10.2.5 Rotating Machines 193<br/><br/>10.2.6 Transformers 193<br/><br/>10.3 Fault Analysis 197<br/><br/>10.3.1 Single Line–neutral Fault 198<br/><br/>10.3.2 Double Line–neutral Fault 199<br/><br/>10.3.3 Line–Line Fault 200<br/><br/>10.3.4 Example of Fault Calculations 201<br/><br/>10.4 System Protection 205<br/><br/>10.4.1 Fuses 206<br/><br/>10.5 Switches 207<br/><br/>10.6 Coordination 208<br/><br/>10.6.1 Ground Overcurrent 208<br/><br/>10.7 Impedance Relays 208<br/><br/>10.7.1 Directional Elements 209<br/><br/>10.8 Differential Relays 210<br/><br/>10.8.1 Ground Fault Protection for Personnel 211<br/><br/>10.9 Zones of System Protection 212<br/><br/>10.10 Problems 212<br/><br/>11 Load Flow 219<br/><br/>11.1 Two Ports and Lines 219<br/><br/>11.1.1 Power Circles 221<br/><br/>11.2 Load Flow in a Network 222<br/><br/>11.3 Gauss–Seidel Iterative Technique 224<br/><br/>11.4 Bus Admittance 226<br/><br/>11.4.1 Bus Incidence 226<br/><br/>11.4.2 Alternative Assembly of Bus Admittance 227<br/><br/>11.5 Example: Simple Program 228<br/><br/>11.5.1 Example Network 228<br/><br/>11.6 MATLAB Script for the Load Flow Example 229<br/><br/>11.7 Problems 231<br/><br/>12 Power Electronics and Converters in Power Systems 235<br/><br/>12.1 Switching Devices 235<br/><br/>12.1.1 Diode 236<br/><br/>12.1.2 Thyristor 236<br/><br/>12.1.3 Bipolar Transistors 237<br/><br/>12.2 Rectifier Circuits 239<br/><br/>12.2.1 Full-Wave Rectifier 239<br/><br/>12.3 DC–DC Converters 247<br/><br/>12.3.1 Pulse Width Modulation 249<br/><br/>12.3.2 Boost Converter 249<br/><br/>12.4 Canonical Cell 255<br/><br/>12.4.1 Bidirectional Converter 255<br/><br/>12.4.2 H-Bridge 257<br/><br/>12.5 Three-Phase Bridge Circuits 259<br/><br/>12.5.1 Rectifier Operation 259<br/><br/>12.5.2 Phase Control 261<br/><br/>12.5.3 Commutation Overlap 262<br/><br/>12.5.4 AC Side Current Harmonics 265<br/><br/>12.6 High-Voltage DC Transmission 270<br/><br/>12.7 Basic Operation of a Converter Bridge 271<br/><br/>12.7.1 Turn-On Switch 272<br/><br/>12.7.2 Inverter Terminal 272<br/><br/>12.8 Achieving High Voltage 273<br/><br/>12.9 Problems 274<br/><br/>13 Induction Machines 281<br/><br/>13.1 Introduction 281<br/><br/>13.2 Induction Machine Transformer Model 283<br/><br/>13.2.1 Operation: Energy Balance 289<br/><br/>13.2.2 Example of Operation 294<br/><br/>13.2.3 Motor Performance Requirements 294<br/><br/>13.3 Squirrel-Cage Machines 296<br/><br/>13.4 Single-Phase Induction Motors 297<br/><br/>13.4.1 Rotating Fields 297<br/><br/>13.4.2 Power Conversion in the Single-Phase Induction Machine 298<br/><br/>13.4.3 Starting of Single-Phase Induction Motors 300<br/><br/>13.4.4 Split Phase Operation 301<br/><br/>13.5 Induction Generators 303<br/><br/>13.6 Induction Motor Control 306<br/><br/>13.6.1 Volts/Hz Control 306<br/><br/>13.6.2 Field Oriented Control 307<br/><br/>13.6.3 Elementary Model 308<br/><br/>13.6.4 Simulation Model 309<br/><br/>13.6.5 Control Model 310<br/><br/>13.6.6 Field-Oriented Strategy 311<br/><br/>13.7 Doubly Fed Induction Machines 313<br/><br/>13.7.1 Steady State Operation 315<br/><br/>13.8 Appendix 1: Squirrel-Cage Machine Model 318<br/><br/>13.8.1 Rotor Currents and Induced Flux 319<br/><br/>13.8.2 Squirrel-Cage Currents 320<br/><br/>13.9 Appendix 2: Single-Phase Squirrel Cage Model 325<br/><br/>13.10 Appendix 3: Induction Machine Winding Schemes 326<br/><br/>13.10.1 Winding Factor for Concentric Windings 329<br/><br/>13.11 Problems 331<br/><br/>14 DC (Commutator) Machines 337<br/><br/>14.1 Geometry 337<br/><br/>14.2 Torque Production 338<br/><br/>14.3 Back Voltage 339<br/><br/>14.4 Operation 341<br/><br/>14.4.1 Shunt Operation 342<br/><br/>14.4.2 Separately Excited 343<br/><br/>14.4.3 Machine Capability 345<br/><br/>14.5 Series Connection 346<br/><br/>14.6 Universal Motors 348<br/><br/>14.7 Commutator 349<br/><br/>14.7.1 Commutation Interpoles 351<br/><br/>14.7.2 Compensation 351<br/><br/>14.8 Compound Wound DC Machines 352<br/><br/>14.9 Problems 354<br/><br/>15 Permanent Magnets in Electric Machines 357<br/><br/>15.1 Permanent Magnets 357<br/><br/>15.1.1 Permanent Magnets in Magnetic Circuits 359<br/><br/>15.1.2 Load Line Analysis 360<br/><br/>15.2 Commutator Machines 363<br/><br/>15.2.1 Voltage 365<br/><br/>15.2.2 Armature Resistance 366<br/><br/>15.3 Brushless PM Machines 367<br/><br/>15.4 Motor Morphologies 367<br/><br/>15.4.1 Surface Magnet Machines 367<br/><br/>15.4.2 Interior Magnet, Flux Concentrating Machines 368<br/><br/>15.4.3 Operation 369<br/><br/>15.4.4 A Little Two-Reaction Theory 371<br/><br/>15.4.5 Finding Torque Capability 374<br/><br/>15.5 Problems 380<br/><br/>Index 385 |
520 ## - SUMMARY, ETC. |
Summary, etc |
DESCRIPTION<br/>This innovative approach to the fundamentals of electric power provides the most rigorous, comprehensive and modern treatment available. To impart a thorough grounding in electric power systems, it begins with an informative discussion on per-unit normalizations, symmetrical components and iterative load flow calculations.<br/><br/>Covering important topics within the power system, such as protection and DC transmission, this book looks at both traditional power plants and those used for extracting sustainable energy from wind and sunlight.<br/><br/>With classroom-tested material, this book also presents:<br/><br/>the principles of electromechanical energy conversion and magnetic circuits;<br/>synchronous machines - the most important generators of electric power;<br/>power electronics;<br/>induction and direct current electric motors.<br/>Homework problems with varying levels of difficulty are included at the end of each chapter, and an online solutions manual for tutors is available. A useful Appendix contains a review of elementary network theory.<br/><br/>For senior undergraduate and postgraduate students studying advanced electric power systems as well as engineers re-training in this area, this textbook will be an indispensable resource. It will also benefit engineers in electronic power systems, power electronic systems, electric motors and generators, robotics and mechatronics.<br/><br/>www.wiley.com/go/kirtley_electric |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Electric power production. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Electrification. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Electric power production |
856 ## - ELECTRONIC LOCATION AND ACCESS |
Uniform Resource Identifier |
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119994404 |
Link text |
Full text available at Wiley Online Library Click here to view |
942 ## - ADDED ENTRY ELEMENTS |
Source of classification or shelving scheme |
|
Item type |
EBOOK |