000 -LEADER |
fixed length control field |
05670nam a22003017a 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20220210151731.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
220210b ||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119663546 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119663553 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781786305237 |
041 ## - LANGUAGE CODE |
Language code of text/sound track or separate title |
eng |
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
629.892 |
Edition number |
23 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Preferred name for the person |
Jaulin, Luc |
Relator term |
author |
245 ## - TITLE STATEMENT |
Title |
Mobile robotics / |
Statement of responsibility, etc |
Luc Jaulin. |
250 ## - EDITION STATEMENT |
Edition statement |
Second Edition. |
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Place of publication, distribution, etc |
London ; |
-- |
Hoboken, NJ : |
Name of publisher, distributor, etc |
ISTE ; |
-- |
John Wiley & Sons, |
Date of publication, distribution, etc |
c 2019. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
1 online resource. |
336 ## - CONTENT TYPE |
Content type term |
text |
Content type code |
txt |
Source |
rdacontent |
337 ## - MEDIA TYPE |
Media type term |
computer |
Media type code |
c |
Source |
rdamedia |
338 ## - CARRIER TYPE |
Carrier type term |
online resource |
Carrier type code |
cr |
Source |
rdacarrier |
500 ## - GENERAL NOTE |
General note |
ABOUT THE AUTHOR<br/><br/>Luc Jaulin is Professor in robotics at ENSTA-Bretagne in France. He conducts research at the Lab-STICC in the field of submarine robotics and sailing robots using set methods. |
505 0# - CONTENTS |
Formatted contents note |
TABLE OF CONTENTS<br/><br/>Introduction ix<br/><br/>Chapter 1. Three-dimensional Modeling 1<br/><br/>1.1. Rotation matrices 1<br/><br/>1.1.1. Definition 2<br/><br/>1.1.2. Lie group 3<br/><br/>1.1.3. Lie algebra 4<br/><br/>1.1.4. Rotation vector 5<br/><br/>1.1.5. Adjoint 6<br/><br/>1.1.6. Rodrigues rotation formulas 7<br/><br/>1.1.7. Coordinate system change 8<br/><br/>1.2. Euler angles 11<br/><br/>1.2.1. Definition 11<br/><br/>1.2.2. Rotation vector of a moving Euler matrix 13<br/><br/>1.3. Inertial unit 14<br/><br/>1.4. Dynamic modeling 17<br/><br/>1.4.1. Principle 17<br/><br/>1.4.2. Modeling a quadrotor 18<br/><br/>1.5. Exercises 20<br/><br/>1.6. Corrections 37<br/><br/>Chapter 2. Feedback Linearization 65<br/><br/>2.1. Controlling an integrator chain 65<br/><br/>2.1.1. Proportional-derivative controller 66<br/><br/>2.1.2. Proportional-integral-derivative controller 67<br/><br/>2.2. Introductory example 68<br/><br/>2.3. Principle of the method 69<br/><br/>2.3.1. Principle 69<br/><br/>2.3.2. Relative degree 71<br/><br/>2.3.3. Differential delay matrix 72<br/><br/>2.3.4. Singularities 73<br/><br/>2.4. Cart 75<br/><br/>2.4.1. First model 75<br/><br/>2.4.2. Second model 76<br/><br/>2.5. Controlling a tricycle 78<br/><br/>2.5.1. Speed and heading control 78<br/><br/>2.5.2. Position control 80<br/><br/>2.5.3. Choosing another output 81<br/><br/>2.6. Sailboat 82<br/><br/>2.6.1. Polar curve 83<br/><br/>2.6.2. Differential delay 83<br/><br/>2.6.3. The method of feedback linearization 84<br/><br/>2.6.4. Polar curve control 87<br/><br/>2.7. Sliding mode 87<br/><br/>2.8. Kinematic model and dynamic model 90<br/><br/>2.8.1. Principle 90<br/><br/>2.8.2. Example of the inverted rod pendulum 91<br/><br/>2.8.3. Servo-motors 94<br/><br/>2.9. Exercises 95<br/><br/>2.10. Corrections 107<br/><br/>Chapter 3. Model-free Control 133<br/><br/>3.1. Model-free control of a robot cart 134<br/><br/>3.1.1. Proportional heading and speed controller 134<br/><br/>3.1.2. Proportional-derivative heading controller 136<br/><br/>3.2. Skate car 137<br/><br/>3.2.1. Model 138<br/><br/>3.2.2. Sinusoidal control 140<br/><br/>3.2.3. Maximum thrust control 140<br/><br/>3.2.4. Simplification of the fast dynamics 142<br/><br/>3.3. Sailboat 145<br/><br/>3.3.1. Problem 145<br/><br/>3.3.2. Controller 146<br/><br/>3.3.3. Navigation 152<br/><br/>3.3.4. Experiment 153<br/><br/>3.4. Exercises 155<br/><br/>3.5. Corrections 168<br/><br/>Chapter 4. Guidance 183<br/><br/>4.1. Guidance on a sphere 183<br/><br/>4.2. Path planning 187<br/><br/>4.2.1. Simple example 187<br/><br/>4.2.2. Bézier polynomials 188<br/><br/>4.3. Voronoi diagram 189<br/><br/>4.4. Artificial potential field method 191<br/><br/>4.5. Exercises 192<br/><br/>4.6. Corrections 201<br/><br/>Chapter 5. Instantaneous Localization 221<br/><br/>5.1. Sensors 221<br/><br/>5.2. Goniometric localization 225<br/><br/>5.2.1. Formulation of the problem 225<br/><br/>5.2.2. Inscribed angles 226<br/><br/>5.2.3. Static triangulation of a plane robot 228<br/><br/>5.2.4. Dynamic triangulation 229<br/><br/>5.3. Multilateration 230<br/><br/>5.4. Exercises 231<br/><br/>5.5. Corrections 236<br/><br/>Chapter 6. Identification 243<br/><br/>6.1. Quadratic functions 243<br/><br/>6.1.1. Definition 243<br/><br/>6.1.2. Derivative of a quadratic form 244<br/><br/>6.1.3. Eigenvalues of a quadratic function 245<br/><br/>6.1.4. Minimizing a quadratic function 245<br/><br/>6.2. The least squares method 246<br/><br/>6.2.1. Linear case 246<br/><br/>6.2.2. Nonlinear case 248<br/><br/>6.3. Exercises 250<br/><br/>6.4. Corrections 253<br/><br/>Chapter 7. Kalman Filter 263<br/><br/>7.1. Covariance matrices 263<br/><br/>7.1.1. Definitions and interpretations 263<br/><br/>7.1.2. Properties 266<br/><br/>7.1.3. Confidence ellipse 267<br/><br/>7.1.4. Generating Gaussian random vectors 268<br/><br/>7.2. Unbiased orthogonal estimator 269<br/><br/>7.3. Application to linear estimation 274<br/><br/>7.4. Kalman filter 275<br/><br/>7.5. Kalman–Bucy 279<br/><br/>7.6. Extended Kalman filter 282<br/><br/>7.7. Exercises 283<br/><br/>7.8. Corrections 298<br/><br/>Chapter 8. Bayes Filter 329<br/><br/>8.1. Introduction 329<br/><br/>8.2. Basic notions of probabilities 329<br/><br/>8.3. Bayes filter 332<br/><br/>8.4. Bayes smoother 334<br/><br/>8.5. Kalman smoother 335<br/><br/>8.5.1. Equations of the Kalman smoother 335<br/><br/>8.5.2. Implementation 336<br/><br/>8.6. Exercises 337<br/><br/>8.7. Corrections 345<br/><br/>References 359<br/><br/>Index 361 |
520 ## - SUMMARY, ETC. |
Summary, etc |
DESCRIPTION<br/><br/>Mobile Robotics presents the different tools and methods that enable the design of mobile robots; a discipline booming with the emergence of flying drones, underwater mine-detector robots, robot sailboats and vacuum cleaners.<br/><br/>Illustrated with simulations, exercises and examples, this book describes the fundamentals of modeling robots, developing the concepts of actuators, sensors, control and guidance. Three-dimensional simulation tools are also explored, as well as the theoretical basis for the reliable localization of robots within their environment.<br/><br/>This revised and updated edition contains additional exercises and a completely new chapter on the Bayes filter, an observer that enhances our understanding of the Kalman filter and facilitates certain proofs. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Mobile robots. |
856 ## - ELECTRONIC LOCATION AND ACCESS |
Uniform Resource Identifier |
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119663546 |
Link text |
Full text available at Wiley Online Library Click here to view |
942 ## - ADDED ENTRY ELEMENTS |
Source of classification or shelving scheme |
|
Item type |
EBOOK |