Probability with R : (Record no. 76992)

000 -LEADER
fixed length control field 12059nam a22003977a 4500
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230221151121.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr an aaaaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 211005b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119536949
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119536963
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9781119536925
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9781119536987
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng.
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 004.01/5113
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Preferred name for the person Horgan, Jane M.,
Dates associated with a name 1947-,
Relator term author.
245 10 - TITLE STATEMENT
Title Probability with R :
Remainder of title an introduction with computer science applications /
Statement of responsibility, etc Jane Mary Horgan.
250 ## - EDITION STATEMENT
Edition statement Second edition.
263 ## - PROJECTED PUBLICATION DATE
Projected publication date 2001
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, NJ, USA :
Name of publisher, distributor, etc Wiley,
Date of publication, distribution, etc 2020.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (496 pages).
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code n
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code nc
Source rdacarrier
500 ## - GENERAL NOTE
General note ABOUT THE AUTHOR<br/>JANE M. HORGAN is Emeritus Professor of Statistics in the School of Computing, Dublin City University, Ireland. A Fellow of the Institute of Statisticians, she graduated in Statistics with a First Class Honours from University College Cork and completed postgraduate work at the London School of Economics and at London City University. Dr. Horgan has published extensively in statistics and computing.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note TABLE OF CONTENTS<br/>Preface to the Second Edition xiii<br/><br/>Preface to the First Edition xvii<br/><br/>Acknowledgments xxi<br/><br/>About the Companion Website xxiii<br/><br/>I The R Language 1<br/><br/>1 Basics of R 3<br/><br/>1.1 What is R? 3<br/><br/>1.2 Installing R 4<br/><br/>1.3 R Documentation 4<br/><br/>1.4 Basics 5<br/><br/>1.5 Getting Help 6<br/><br/>1.6 Data Entry 7<br/><br/>1.7 Missing Values 11<br/><br/>1.8 Editing 12<br/><br/>1.9 Tidying Up 12<br/><br/>1.10 Saving and Retrieving 13<br/><br/>1.11 Packages 13<br/><br/>1.12 Interfaces 14<br/><br/>1.13 Project 16<br/><br/>2 Summarizing Statistical Data 17<br/><br/>2.1 Measures of Central Tendency 17<br/><br/>2.2 Measures of Dispersion 21<br/><br/>2.3 Overall Summary Statistics 24<br/><br/>2.4 Programming in R 25<br/><br/>2.5 Project 30<br/><br/>3 Graphical Displays 31<br/><br/>3.1 Boxplots 31<br/><br/>3.2 Histograms 36<br/><br/>3.3 Stem and Leaf 40<br/><br/>3.4 Scatter Plots 40<br/><br/>3.5 The Line of Best Fit 43<br/><br/>3.6 Machine Learning and the Line of Best Fit 44<br/><br/>3.7 Graphical Displays Versus Summary Statistics 49<br/><br/>3.8 Projects 53<br/><br/>II Fundamentals of Probability 55<br/><br/>4 Probability Basics 57<br/><br/>4.1 Experiments, Sample Spaces, and Events 58<br/><br/>4.2 Classical Approach to Probability 61<br/><br/>4.3 Permutations and Combinations 64<br/><br/>4.4 The Birthday Problem 71<br/><br/>4.5 Balls and Bins 76<br/><br/>4.6 R Functions for Allocation 79<br/><br/>4.7 Allocation Overload 81<br/><br/>4.8 Relative Frequency Approach to Probability 83<br/><br/>4.9 Simulating Probabilities 84<br/><br/>4.10 Projects 89<br/><br/>5 Rules of Probability 91<br/><br/>5.1 Probability and Sets 91<br/><br/>5.2 Mutually Exclusive Events 92<br/><br/>5.3 Complementary Events 93<br/><br/>5.4 Axioms of Probability 94<br/><br/>5.5 Properties of Probability 96<br/><br/>6 Conditional Probability 104<br/><br/>6.1 Multiplication Law of Probability 107<br/><br/>6.2 Independent Events 108<br/><br/>6.3 Independence of More than Two Events 110<br/><br/>6.4 The Intel Fiasco 113<br/><br/>6.5 Law of Total Probability 115<br/><br/>6.6 Trees 118<br/><br/>6.7 Project 123<br/><br/>7 Posterior Probability and Bayes 124<br/><br/>7.1 Bayes’ Rule 124<br/><br/>7.2 Hardware Fault Diagnosis 131<br/><br/>7.3 Machine Learning and Classification 132<br/><br/>7.4 Spam Filtering 135<br/><br/>7.5 Machine Translation 137<br/><br/>8 Reliability 142<br/><br/>8.1 Series Systems 142<br/><br/>8.2 Parallel Systems 143<br/><br/>8.3 Reliability of a System 143<br/><br/>8.4 Series–Parallel Systems 150<br/><br/>8.5 The Design of Systems 153<br/><br/>8.6 The General System 158<br/><br/>III Discrete Distributions 161<br/><br/>9 Introduction to Discrete Distributions 163<br/><br/>9.1 Discrete Random Variables 163<br/><br/>9.2 Cumulative Distribution Function 168<br/><br/>9.3 Some Simple Discrete Distributions 170<br/><br/>9.4 Benford’s Law 174<br/><br/>9.5 Summarizing Random Variables: Expectation 175<br/><br/>9.6 Properties of Expectations 180<br/><br/>9.7 Simulating Discrete Random Variables and Expectations 183<br/><br/>9.8 Bivariate Distributions 187<br/><br/>9.9 Marginal Distributions 189<br/><br/>9.10 Conditional Distributions 190<br/><br/>9.11 Project 194<br/><br/>10 The Geometric Distribution 196<br/><br/>10.1 Geometric Random Variables 198<br/><br/>10.2 Cumulative Distribution Function 203<br/><br/>10.3 The Quantile Function 207<br/><br/>10.4 Geometric Expectations 209<br/><br/>10.5 Simulating Geometric Probabilities and Expectations 210<br/><br/>10.6 Amnesia 217<br/><br/>10.7 Simulating Markov 219<br/><br/>10.8 Projects 224<br/><br/>11 The Binomial Distribution 226<br/><br/>11.1 Binomial Probabilities 227<br/><br/>11.2 Binomial Random Variables 229<br/><br/>11.3 Cumulative Distribution Function 233<br/><br/>11.4 The Quantile Function 235<br/><br/>11.5 Reliability: The General System 238<br/><br/>11.6 Machine Learning 241<br/><br/>11.7 Binomial Expectations 245<br/><br/>11.8 Simulating Binomial Probabilities and Expectations 248<br/><br/>11.9 Projects 254<br/><br/>12 The Hypergeometric Distribution 255<br/><br/>12.1 Hypergeometric Random Variables 257<br/><br/>12.2 Cumulative Distribution Function 260<br/><br/>12.3 The Lottery 262<br/><br/>12.4 Hypergeometric or Binomial? 266<br/><br/>12.5 Projects 273<br/><br/>13 The Poisson Distribution 274<br/><br/>13.1 Death by Horse Kick 274<br/><br/>13.2 Limiting Binomial Distribution 275<br/><br/>13.3 Random Events in Time and Space 281<br/><br/>13.4 Probability Density Function 283<br/><br/>13.5 Cumulative Distribution Function 287<br/><br/>13.6 The Quantile Function 289<br/><br/>13.7 Estimating Software Reliability 290<br/><br/>13.8 Modeling Defects in Integrated Circuits 292<br/><br/>13.9 Simulating Poisson Probabilities 293<br/><br/>13.10 Projects 298<br/><br/>14 Sampling Inspection Schemes 299<br/><br/>14.1 Introduction 299<br/><br/>14.2 Single Sampling Inspection Schemes 300<br/><br/>14.3 Acceptance Probabilities 301<br/><br/>14.4 Simulating Sampling Inspection Schemes 303<br/><br/>14.5 Operating Characteristic Curve 308<br/><br/>14.6 Producer’s and Consumer’s Risks 310<br/><br/>14.7 Design of Sampling Schemes 311<br/><br/>14.8 Rectifying Sampling Inspection Schemes 315<br/><br/>14.9 Average Outgoing Quality 316<br/><br/>14.10 Double Sampling Inspection Schemes 318<br/><br/>14.11 Average Sample Size 319<br/><br/>14.12 Single Versus Double Schemes 320<br/><br/>14.13 Projects 324<br/><br/>IV Continuous Distributions 325<br/><br/>15 Introduction to Continuous Distributions 327<br/><br/>15.1 Introduction to Continuous Random Variables 328<br/><br/>15.2 Probability Density Function 328<br/><br/>15.3 Cumulative Distribution Function 331<br/><br/>15.4 The Uniform Distribution 332<br/><br/>15.5 Expectation of a Continuous Random Variable 336<br/><br/>15.6 Simulating Continuous Variables 338<br/><br/>16 The Exponential Distribution 341<br/><br/>16.1 Modeling Waiting Times 341<br/><br/>16.2 Probability Density Function of Waiting Times 342<br/><br/>16.3 Cumulative Distribution Function 344<br/><br/>16.4 Modeling Lifetimes 347<br/><br/>16.5 Quantiles 349<br/><br/>16.6 Exponential Expectations 351<br/><br/>16.7 Simulating Exponential Probabilities and Expectations 353<br/><br/>16.8 Amnesia 356<br/><br/>16.9 Simulating Markov 360<br/><br/>16.10 Project 369<br/><br/>17 Queues 370<br/><br/>17.1 The Single Server Queue 370<br/><br/>17.2 Traffic Intensity 371<br/><br/>17.3 Queue Length 372<br/><br/>17.4 Average Response Time 376<br/><br/>17.5 Extensions of the M/M/1 Queue 378<br/><br/>17.6 Project 382<br/><br/>18 The Normal Distribution 383<br/><br/>18.1 The Normal Probability Density Function 385<br/><br/>18.2 The Cumulative Distribution Function 387<br/><br/>18.3 Quantiles 389<br/><br/>18.4 The Standard Normal Distribution 391<br/><br/>18.5 Achieving Normality: Limiting Distributions 394<br/><br/>18.6 Projects 405<br/><br/>19 Process Control 407<br/><br/>19.1 Control Charts 407<br/><br/>19.2 Cusum Charts 411<br/><br/>19.3 Charts for Defective Rates 412<br/><br/>19.4 Project 416<br/><br/>V Tailing Off 417<br/><br/>20 The Inequalities of Markov and Chebyshev 419<br/><br/>20.1 Markov’s Inequality 420<br/><br/>20.2 Algorithm Runtime 426<br/><br/>20.3 Chebyshev’s Inequality 427<br/><br/>Appendix A: Data: Examination Results 433<br/><br/>Appendix B: The Line of Best Fit: Coefficient Derivations 437<br/><br/>Appendix C: Variance Derivations 440<br/><br/>Appendix D: Binomial Approximation to the Hypergeometric 446<br/><br/>Appendix E: Normal Tables 448<br/><br/>Appendix F: The Inequalities of Markov and Chebyshev 450<br/><br/>Index to R Commands 453<br/><br/>Index 457<br/><br/>Postface
520 ## - SUMMARY, ETC.
Summary, etc "This self-contained book integrates the use of computers with introductory probability and R, and all new ideas are introduced and illustrated using real computer-related examples.R, the widely-popular software, is not only used as a tool for calculation and data analysis, but also to illustrate the concepts of probability and to simulate distributions. Most examples are related to computing and cover a wide range of computer science applications, including testing program performance, measuring response time and cpu time, estimating the reliability of components and systems, evaluating algorithms and queueing systems, and improving wireless communication. This new edition contains a new chapter on discrete bivariate distributions. This chapter covers distribution of two discrete random variables, joint probabilities, and independence. A Wiley companion site provides data and solutions to problems within the book. Applied examples and exercises in areas in computing that have evolved over the last ten years will be included. Like the first edition, this edition will be primarily addressed to students of computer science and related areas. The second edition will bring this book up to date and will provide extra sections and examples to incorporate new areas of development, such as data mining, machine learning, artificial intelligence, and robotics"--
Assigning source Provided by publisher.
520 ## - SUMMARY, ETC.
Summary, etc DESCRIPTION<br/>Provides a comprehensive introduction to probability with an emphasis on computing-related applications<br/><br/>This self-contained new and extended edition outlines a first course in probability applied to computer-related disciplines. As in the first edition, experimentation and simulation are favoured over mathematical proofs. The freely down-loadable statistical programming language R is used throughout the text, not only as a tool for calculation and data analysis, but also to illustrate concepts of probability and to simulate distributions. The examples in Probability with R: An Introduction with Computer Science Applications, Second Edition cover a wide range of computer science applications, including: testing program performance; measuring response time and CPU time; estimating the reliability of components and systems; evaluating algorithms and queuing systems. <br/><br/>Chapters cover: The R language; summarizing statistical data; graphical displays; the fundamentals of probability; reliability; discrete and continuous distributions; and more. <br/><br/>This second edition includes:<br/><br/>improved R code throughout the text, as well as new procedures, packages and interfaces;<br/>updated and additional examples, exercises and projects covering recent developments of computing;<br/>an introduction to bivariate discrete distributions together with the R functions used to handle large matrices of conditional probabilities, which are often needed in machine translation;<br/>an introduction to linear regression with particular emphasis on its application to machine learning using testing and training data;<br/>a new section on spam filtering using Bayes theorem to develop the filters;<br/>an extended range of Poisson applications such as network failures, website hits, virus attacks and accessing the cloud;<br/>use of new allocation functions in R to deal with hash table collision, server overload and the general allocation problem.<br/>The book is supplemented with a Wiley Book Companion Site featuring data and solutions to exercises within the book.<br/><br/>Primarily addressed to students of computer science and related areas, Probability with R: An Introduction with Computer Science Applications, Second Edition is also an excellent text for students of engineering and the general sciences. Computing professionals who need to understand the relevance of probability in their areas of practice will find it useful.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Computer science
General subdivision Mathematics.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Probabilities.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element R (Computer program language)
655 #0 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
856 ## - ELECTRONIC LOCATION AND ACCESS
Link text Fulltext available at Wiley Online Library
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781119536963
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Source of acquisition Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2021-10-05 ALBASA 50745 004.015113 H 2020 CL-50745 2021-10-05 2021-10-05 EBOOK