000 -LEADER |
fixed length control field |
14957cam a2200397 a 4500 |
001 - CONTROL NUMBER |
control field |
15423048 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
CITU |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20210330082231.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
080822s2009 nyua 001 0 eng |
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER |
LC control number |
2008037488 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9780071606134 (alk. paper) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
0071606130 (alk. paper) |
035 ## - SYSTEM CONTROL NUMBER |
System control number |
(OCoLC)ocn244060514 |
035 ## - SYSTEM CONTROL NUMBER |
System control number |
(OCoLC)244060514 |
050 00 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
TJ213 |
Item number |
.K578 2009 |
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
629.8 |
Edition number |
22 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Preferred name for the person |
Koenig, David M. |
Relator term |
author |
245 10 - TITLE STATEMENT |
Title |
Practical control engineering : |
Remainder of title |
a guide for engineers, managers, and practitioners / |
Statement of responsibility, etc |
David M. Koenig. |
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Place of publication, distribution, etc |
New York: |
Name of publisher, distributor, etc |
McGraw-Hill, |
Date of publication, distribution, etc |
c2009. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
xxi, 474 pages : |
Other physical details |
illustrations ; |
Dimensions |
24 cm. |
336 ## - CONTENT TYPE |
Content type term |
text |
Content type code |
txt |
Source |
rdacontent |
337 ## - MEDIA TYPE |
Media type term |
unmediated |
Media type code |
n |
Source |
rdamedia |
338 ## - CARRIER TYPE |
Carrier type term |
volume |
Source |
volume |
500 ## - GENERAL NOTE |
General note |
Includes index. |
500 ## - GENERAL NOTE |
General note |
"MATLAB examples"--Cover. |
505 ## - CONTENTS |
Formatted contents note |
Contents<br/>Preface<br/>Chapter One: Qualitative Concepts in Control Engineering and Process Analysis<br/>1.1 What is a Feedback Control? <br/>1.2 What is a FeedForward Controller?<br/>1.3 Process Disturbances<br/>1.4 Comparing Feedback and FeedForward Controllers<br/>1.5 Combining Feedback and FeedForward Controllers<br/>1.6 Why is Feedback Control Difficult to Carry Out?<br/>1.7 An Example of Controlling a Noisy Industrial Process<br/>1.8 What is a Control Engineer?<br/>1.9 Summary and Conclusions <br/>Chapter Two: Introduction to Developing Control Algorithms<br/>2.1 Approaches to Developing Control Algorithms<br/> 2.1.1 Style, Massive Intelligence, Luck and Heroism (SMILH)<br/> 2.1.2 A Priori First Principles<br/> 2.1.3 A Common Sense, Pedestrian Approach<br/>2.2 Dealing with the Existing Process<br/> 2.2.1 What is the Problem?<br/> 2.2.2 The Diamond Road Map<br/> Compartmentalization and Requirements Gathering<br/> Where to Start?<br/> Massive Cross Correlation<br/> Time Domain Analysis<br/> Frequency Domain Analysis<br/> Step Change Response Analysis<br/> Control Development<br/>2.3 Dealing with Control Algorithms Bundled with the Process<br/> What is the Problem?<br/> Separation and Success<br/> Problem Solving and Bundling<br/>2.4 Some Comments on Debugging Control Algorithms<br/> Rookie Fright<br/> When in Doubt, Simulate ¿ Not!<br/> At Last ¿ Busted!<br/> Surprise Sub<br/> Totally Covering my Derriere<br/> It¿s Too Complicated ¿ Use the Process for Debugging<br/>2.5 Documentation and Indispensability<br/>2.6 Summary and Conclusions<br/>Chapter Three: Basic Concepts in Process Dynamics<br/> 3.1 The First Order Process ¿ An Introduction<br/> The Process Gain and Time Constant<br/>3.2 Mathematical Descriptions of the First Order Process<br/> 3.2.1 The Continuous-Time Domain Model<br/> Scaling<br/> 3.2.2 Solution of the Continuous-Time Domain Model<br/> Comments about the Solution<br/> 3.2.3 The First Order Model and Proportional Control<br/> Faster Response<br/> Offset from Set Point<br/> 3.2.4 The First Order Model and Proportional-Integral Control<br/> Showing that there is no Offset<br/> Trying a Partial Solution for the Transient Part<br/> Critical Damping<br/> Overdamped Response<br/> Underdamping<br/> So What?<br/>3.3 The Laplace Transform<br/> 3.3.1 The Transfer Function and Block Diagram Algebra<br/> 3.3.2 Applying the New Tool to the First Order Model<br/> 3.3.4 The Laplace Transform of Derivatives<br/>3.3.5 Applying the Laplace Transform to the Case with Proportional plus Integral Control<br/> 3.3.6 More Block Diagram Algebra and Some Useful Transfer Functions<br/> 3.3.7 Zeros and Poles <br/> Partial Fractions and Poles<br/> Poles and Time Domain Exponential Terms<br/>3.4 Review and Summary<br/>Chapter Four: A New Domain and More Process Models<br/>4.1 Onward to the Frequency Domain<br/> Sinusodially Disturbing the First Order Process<br/> A Little Mathematical Support in the Time Domain<br/> A Little Mathematical Support in the Laplace Transform Domain<br/> A Little Graphical Support<br/> A Graphing Trick<br/>4.2 How Can Sinusoids Help Us with Understanding Feedback Control?<br/>4.3 The First Order Process with Feedback Control in the Frequency Domain<br/> What¿s this about the Integral?<br/> What about adding P to the I?<br/>Partial Summary and a Rule of Thumb using Phase Margin and Gain <br/> Margin<br/>4.4 A Pure Deadtime Process<br/> Proportional-Only Control of a Pure Deadtime Process<br/> Integral-Only Control of a Pure Deadtime Process<br/>4.5 A First Order Process with Deadtime (FOWDT) Process<br/> The Concept of Minimum Phase<br/> Proportional-Only Control<br/> Proportional-Integral Control of the FOWDT Process<br/>4.6 A Few Comments about Simulating Processes with Variable Deadtimes<br/>4.7 Partial Summary and a Slight modification of the Rule of Thumb<br/>4.8 Summary and Conclusions<br/>Chapter Five. Matrices and Higher Order Process Models<br/>5.1 Third Order Processes without Back Flow<br/> The Laplace Transform Version<br/> The Frequency Domain Version<br/> The Matrix (State Space) Version<br/>5.2 Third Order Process with Back Flow<br/> The State Space Version<br/>5.3 Control of Three Tank System with No Back Flow<br/> Closed Loop Performance in the Frequency Domain<br/>5.4 Critical Values and Finding the Poles<br/>5.5 Multi-Tank Processes<br/> Matching the N-Tank Model with a FOWDT Model<br/>5.6 Summary and Conclusions<br/>Chapter Six: An Underdamped Process<br/>6.1 The Dynamics of the Mass/Spring/Dashpot Process <br/>6.2 Solutions in Four Domains<br/> Time Domain<br/> Laplace Domain Solution<br/> Frequency Domain<br/> State Space Representation<br/> Scaling and Round-Off Error<br/>6.3 PI Control of the Mass/Spring/Dashpot Process<br/>6.4 Derivative Control (PID)<br/> Complete Cancellation<br/> Adding Sensor Noise<br/> Filtering the Derivative<br/>6.5 Compensation Before Control-The Transfer Function Approach<br/>6.6 Compensation Before Control-The State Space Approach<br/>6.7 An Electrical Analog to the Mass-Dashpot-Spring Process<br/>6.8. Summary and Conclusions<br/>Chapter Seven: Distributed Processes<br/>7.1 The Tubular Energy Exchanger ¿ Steady State<br/>7.2 The Tubular Energy Exchanger ¿ Transient Behavior<br/> Transfer by Diffusion<br/>7.3 Solution of the Tubular Heat Exchanger Equation<br/> Inlet Temperature Transfer Function<br/> Steam Jacket Temperature Transfer Function<br/>7.4 Response of Tubular Heat Exchanger to Step in Jacket Temperature<br/> The Large Diameter Case<br/> The Small Diameter Case<br/>7.5 Studying the Tubular Energy Exchanger in the Frequency Domain.<br/>7.6 Control of the Tubular Energy Exchanger<br/>7.7 Lumping the Tubular Energy Exchanger<br/> Modeling an Individual Lump<br/> Steady State Solution<br/> Discretizing the Partial Differential Equation<br/>7.8 Lumping and Axial Transport<br/>7.9 State Space Version of the Lumped Tubular Exchanger<br/>7.10 Summary and Review<br/>Chapter 8: Stochastic Process Disturbances and the Discrete Time Domain<br/>8.1 The Discrete Time Domain<br/>8.2 White Noise and Sample Estimates of Population Measures<br/>The Sample Average<br/>The Sample Variance<br/>The Histogram<br/>The Sample Autocorrelation<br/>The Line Spectrum<br/>The Cumulative Line Spectrum<br/>8.3 Non-White Stochastic Sequences<br/> Positively Autoregressive Sequences<br/> Negatively Autoregressive Sequences<br/>Moving Average Stochastic Sequences<br/>Unstable Nonstationary Stochastic Sequences<br/>Multi-Dimensional Stochastic Processes and the Covariance<br/>8.4 Populations, Realizations, Samples, Estimates and Expected Values<br/> Realizations<br/> Expected Value<br/> Ergodicity and Stationarity<br/> Applying the Expectation Operator<br/>8.5 Comments on Stochastic Disturbances and Difficulty of Control<br/>White Noise<br/>Colored Noise<br/>8.6 Summary and Conclusions<br/>Chapter Nine: The Discrete Time Domain and the Z-Transform<br/>9.1 Discretizing the First Order Model<br/>9.2 Moving to the Z-Domain via the Back Shift Operator<br/>9.3 Sampling and Zero-Holding<br/>9.4 Recognizing the First Order Model as a Discrete-Time Filter<br/>9.5 Discretizing the FOWDT Model<br/>9.6 The PI Control Equation in the Discrete Time Domain<br/>9.7 Converting the PI Control Algorithm to Z-Transforms<br/>9.8 The PIfD Control Equation in the Discrete Time Domain<br/>9.9 Using the Laplace Transform to Design Control Algorithms ¿ The Q Method<br/> Developing the PI Control Algorithm<br/> Developing a PID-Like Control Algorithm<br/>9.10 Using the Z-Transform to Design Control Algorithms<br/>9.11 Designing a Control Algorithm for a Dead-Time process<br/>9.12 Moving to the Frequency Domain<br/>The First Order Process Model<br/>The Ripple<br/> Sampling and Replication<br/>9.13 Filters<br/> Autogressive Filters<br/>Moving Average Filters<br/>A Double Pass Filter<br/>High Pass Filters<br/>9.14 Frequency Domain Filtering<br/>9.15 The Discrete-Time State Space Equation<br/>9.16 Determining Model Parameters from Experimental Data<br/>First Order Models<br/>Third Order Models<br/>A Practical Method<br/>9.17 Process Identification with White Noise Inputs<br/>9.18 Summary<br/>Chapter Ten: Estimating the State and Using It for Control<br/>10.1 An Elementary Presentation of the Kalman Filter<br/>The Process Model<br/>The Pre-Measurement and Post-Measurement Equations<br/>The Scalar Case<br/>A Two-Dimensional Example<br/>The Propagation of the Covariances<br/>The Kalman Filter Gain<br/>10.2 Estimating the Underdamped Process State<br/>10.3 The Dynamics of the Kalman Filter and an Alternative Way to Find the Gain<br/> The Dynamics of a Predictor Estimator<br/>10.4 Using the Kalman Filter for Control<br/> A Little Detour to Find the Integral Gain<br/>10.5 Feeding Back the State for Control<br/> Integral Control?<br/> Duals<br/>10.6 Integral and Multi-Dimensional Control<br/> Setting up the Example Process and Posing the Control Problem<br/> Developing the Discrete Time Version<br/>Finding the Open Loop Eigenvalues and Placing the Closed Loop Eigenvalues<br/> Implementing the Control Algorithm<br/>10.7 PI Control Applied to the Three Tank Process<br/>10.8 Control of the Lumped Tubular Energy Exchanger<br/>10.9 Miscellaneous Issues<br/>Optimal Control<br/>Continuous-Time Domain Kalman Filter<br/>10.10 Summary<br/>Chapter Eleven: A Review of Control Algorithms<br/>11.1 The Strange Motel Shower Stall Control Problem<br/>11.2 Identifying the Strange Motel Shower Stall Control Approach as Integral-Only<br/>11.3 Proportional-Integral, Proportional-Only, and PID Control<br/>PI Control<br/>P-Only Control<br/>PID Control<br/>Modified PID Control<br/>11.4 Cascade Control<br/>11.5 Control of White Noise ¿ Conventional Feedback Control vs. SPC<br/>11.6 Control Choices<br/>11.7 Analysis and Design Tool Choices<br/>Appendix A: Rudimentary Calculus<br/>The Automobile Trip<br/>The Integral, Area and Distance<br/>Approximation of the Integral <br/>Integrals of Useful Functions<br/>The Derivative, Rate of Change and Acceleration<br/>Derivatives of Some Useful Functions<br/>The Relation between the Derivative and the Integral <br/>Some Simple Rules of Differentiation<br/>A Useful Test Function<br/>Summary<br/>Appendix B: Complex Numbers<br/> Complex Conjugates<br/> Complex Numbers as Vectors or Phasors<br/> Euler¿s Equation<br/> An Application to a Problem in Chapter Four<br/> The Full Monty<br/> Summary<br/> <br/>Appendix C: Spectral Analysis<br/>An Elementary Discussion of the Fourier Transform as a Data Fitting <br/> Problem<br/>Partial Summary<br/> Dectecting Periodic Components<br/> The Line Spectrum<br/>The Exponential Form of the Least Squares Fitting Equation<br/> Periodicity in the Time Domain<br/>Sampling and Replication<br/> Apparent Increased Frequency-Domain Resolution via Padding<br/>The Variance and the Discrete Fourier Transform<br/>Impact of Increased Frequency Resolution on Variability of the Power <br/> Spectrum<br/>Aliasing<br/>Summary<br/>Appendix D. Infinite and Taylor¿s Series<br/> Summary<br/>Appendix E. Application of the Exponential Function to Differential Equations<br/> First Order Differential Equations<br/> Partial Summary<br/> Partial Solution of a Second Order Differential Equation<br/> Summary<br/>Appendix F. The Laplace Transform<br/>Laplace Transform of a Constant (or a Step Change)<br/>Laplace Transform of a Step at a Time Greater than Zero<br/>Laplace Transform of a Delayed Quantity<br/>Laplace transform of the Impulse or Dirac Delta function<br/>Laplace Transform of the Exponential Function<br/>Laplace Transform of a Sinusoid<br/>Final Value Theorem<br/>Laplace Transform Tables<br/>Laplace Transform of the Time Domain Derivative<br/>Laplace Transform of Higher Derivatives<br/>Laplace Transform of an Integral<br/>The Laplace Transform Recipe<br/>Applying the Laplace Transform to the First Order Model: The Transfer<br/> Function<br/>Applying the Laplace Transform to the First Order Model: The Impulse<br/> Response<br/>Applying the Laplace Transform to the First Order Model: The Step<br/> Response<br/>Partial Fraction Expansions Applied to Laplace Transforms: The First<br/> Order Problem<br/>Partial Fraction Expansions Applied to Laplace Transforms: The Second<br/> Order Problem<br/>A Precursor to the Convolution Theorem<br/>Using the Integrating Factor to Obtain the Convolution Integral<br/>Application of the Laplace Transform to a First Order Partial Differential<br/> Equation<br/>Solving the Transformed Partial Differential Equation<br/>The Magnitude and Phase of the Transformed Partial Differential Equation<br/>A Brief History of the Laplace Transform<br/>Summary<br/>Appendix G. Vectors and Matrices<br/>Addition and Multiplication of Matrices<br/>Partitioning<br/>State Space Equations and Laplace Transforms<br/>Transposes and Diagonal Matrices<br/>Determinants, Cofactors and Adjoints of a Matrix<br/>The Inverse Matrix<br/>Some Matrix Calculus<br/>The Matrix Exponential Function and Infinite Series<br/>Eigenvalues of Matrices<br/>Eigenvalues of Transposes<br/>More on Operators<br/>The Cayley-Hamilton Theorem<br/>Summary<br/>Appendix H. Solving the State Space Equation<br/>Solving the State Space Equation in the Time Domain for a Constant Input<br/>Solution of the State Space Equation using the Integrating Factor<br/>Solving the State Space Equation in the Laplace Transform Domain<br/>The Discrete-Time State Space Equation<br/>Summary<br/>Appendix I. The Z-Transform<br/>The Sampling Process and the Laplace Transform of a Sampler<br/>The Zero-Order Hold<br/>Z-Transform of the Constant (Step Change)<br/>Z-Transform of the Exponential Function<br/>The Kronecker Delta and its Z-Transform<br/>Some Complex Algebra and the Unit Circle in the z-Plane<br/>A Partial Summary<br/>Developing Z-Transform Transfer Functions from Laplace Tranforms with<br/> Holds<br/>Poles and Associated Time Domain Terms<br/>Final Value Theorem<br/>Summary<br/>Appendix J: A Brief Exposure to Matlab<br/>Index |
520 ## - SUMMARY, ETC. |
Summary, etc |
"Understand the day-to-day procedures of today's control engineer with the pragmatic insights and techniques contained in this unique resource. Written in clear, concise language, Practical Control Engineering shows, step-by-step, how engineers simulate real-world phenomena using dynamic models and algorithms. Learn how to handle single and multiple-staged systems, implement error-free feedback control, eliminate anomalies, and work in the frequency and discrete-time domains. Extensive appendices cover basic calculus, differential equations, vector math, Laplace and Z-transforms, and Matlab basics." |
526 ## - STUDY PROGRAM INFORMATION NOTE |
-- |
600-699 |
-- |
629.8 |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Automatic control. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Control theory. |
856 41 - ELECTRONIC LOCATION AND ACCESS |
Materials specified |
Table of contents only |
Uniform Resource Identifier |
http://www.loc.gov/catdir/toc/ecip0826/2008037488.html |
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN) |
a |
7 |
b |
cbc |
c |
orignew |
d |
1 |
e |
ecip |
f |
20 |
g |
y-gencatlg |
942 ## - ADDED ENTRY ELEMENTS |
Source of classification or shelving scheme |
|
Item type |
BOOK |