Dynamics and control of electric transmission and microgrids / (Record no. 60386)

000 -LEADER
fixed length control field 16434cam a2200469 i 4500
001 - CONTROL NUMBER
control field 20616722
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230217090752.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m |o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr |n|||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 180804s2018 nju ob 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2018037544
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119173403 (ePub)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119173397 (Adobe PDF)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9781119173410
040 ## - CATALOGING SOURCE
Original cataloging agency DLC
Language of cataloging eng
Description conventions rda
Transcribing agency DLC
Modifying agency DLC
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng.
042 ## - AUTHENTICATION CODE
Authentication code pcc
050 10 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TK1007
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.319
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Preferred name for the person Padiyar, K. R.,
Relator term author.
245 10 - TITLE STATEMENT
Title Dynamics and control of electric transmission and microgrids /
Statement of responsibility, etc Professor K. R Padiyar, Professor Anil M Kulkarni.
250 ## - EDITION STATEMENT
Edition statement First edition.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, NJ :
Name of publisher, distributor, etc John Wiley & Sons, Inc.,
Date of publication, distribution, etc 2019
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (504 pages).
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code n
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code nc
Source rdacarrier
500 ## - GENERAL NOTE
General note ABOUT THE AUTHOR<br/>K. R. PADIYAR is Professor Emeritus, Indian Institute of Science, Bangalore, India.<br/><br/>ANIL M. KULKARNI is Professor of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India.<br/><br/>
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note Preface xiii<br/><br/>Acknowledgements xv<br/><br/>1 Introduction 1<br/><br/>1.1 Present Status of Grid Operation 1<br/><br/>1.1.1 General 1<br/><br/>1.1.2 HVDC Transmission 4<br/><br/>1.1.3 Reliability of Electricity Supply 4<br/><br/>1.2 Overview of System Dynamics and Control 4<br/><br/>1.2.1 Power System Stability 4<br/><br/>1.2.2 Mathematical Preliminaries 6<br/><br/>Stability of Equilibrium Point 6<br/><br/>Steady-State Behavior 8<br/><br/>1.2.3 Power System Security 8<br/><br/>1.3 Monitoring and Enhancing System Security 10<br/><br/>1.4 Emergency Control and System Protection 11<br/><br/>1.5 Recent Developments 12<br/><br/>1.5.1 Power System Protection 12<br/><br/>1.5.2 Development of Smart Grids 13<br/><br/>1.5.3 Microgrids 14<br/><br/>1.5.4 Role of System Dynamics and Control 14<br/><br/>1.6 Outline of Chapters 14<br/><br/>References 17<br/><br/>2 Grid Characteristics and Operation 19<br/><br/>2.1 Description of Electric Grids 19<br/><br/>2.2 Detailed Modeling of Three-Phase AC Lines 21<br/><br/>2.3 Circuit Models of Symmetric Networks 22<br/><br/>2.4 Network Equations in DQo and 𝛼𝛽o Components 23<br/><br/>2.4.1 Transformation to Park (dqo) Components 24<br/><br/>2.4.2 Steady-State Equations 25<br/><br/>2.4.3 D-Q Transformation using 𝛼-𝛽 Variables 26<br/><br/>2.5 Frequency and Power Control 28<br/><br/>2.5.1 Tie-Line Bias Frequency Control 31<br/><br/>2.6 Dynamic Characteristics of AC Grids 33<br/><br/>2.6.1 Grid Response to Frequency Modulation 33<br/><br/>2.6.2 Grid Response to Injection of Reactive Current 35<br/><br/>2.7 Control of Power Flow in AC Grids 38<br/><br/>2.7.1 Power Transfer Capability of a Line 38<br/><br/>2.7.2 Power Flow in a Line connected to an AC Transmission Grid 41<br/><br/>2.8 Analysis of Electromagnetic Transients 42<br/><br/>2.8.1 Modeling of Lumped Parameter Components 42<br/><br/>2.8.2 Modeling of a Single-Phase Line 43<br/><br/>2.8.3 Approximation of Series Resistance of Line 44<br/><br/>2.8.4 Modeling of Lossless Multiphase Line 45<br/><br/>2.8.5 Modeling of Multiphase Networks with Lumped Parameters 46<br/><br/>2.9 Transmission Expansion Planning 47<br/><br/>2.10 Reliability in Distribution Systems 48<br/><br/>2.11 Reliable Power Flows in a Transmission Network 48<br/><br/>2.12 Reliability Analysis of Transmission Networks 50<br/><br/>2.A Analysis of a Distributed Parameter Single-Phase Line in Steady State 51<br/><br/>2.A.1 Expressions for a Lossless Line 53<br/><br/>2.A.2 Performance of a Symmetrical Line 54<br/><br/>2.B Computation of Electrical Torque 55<br/><br/>References 57<br/><br/>3 Modeling and Simulation of Synchronous Generator Dynamics 59<br/><br/>3.1 Introduction 59<br/><br/>3.2 Detailed Model of a Synchronous Machine 59<br/><br/>3.2.1 Flux Linkage Equations 60<br/><br/>3.2.2 Voltage equations 61<br/><br/>3.3 Park’s Transformation 62<br/><br/>3.4 Per-Unit Quantities 69<br/><br/>3.5 Equivalent Circuits of a Synchronous Machine 72<br/><br/>3.6 Synchronous Machine Models for Stability Analysis 76<br/><br/>3.6.1 Application of Model (2.1) 80<br/><br/>3.6.2 Application of Model (1.1) 80<br/><br/>3.6.3 Modeling of Saturation 82<br/><br/>3.7 An Exact Circuit Model of a Synchronous Machine for Electromagnetic Transient Analysis 82<br/><br/>3.7.1 Derivation of the Circuit Model 83<br/><br/>3.7.2 Transformation of the Circuit Model 87<br/><br/>3.7.3 Modeling of a Synchronous Generator in the Simulation of Electromagnetic Transients 91<br/><br/>3.7.4 Treatment of Dynamic Saliency 92<br/><br/>3.8 Excitation and Prime Mover Controllers 93<br/><br/>3.8.1 Excitation Systems 93<br/><br/>3.8.2 Modeling of Prime-Mover Control Systems 98<br/><br/>3.9 Transient Instability due to Loss of Synchronism 101<br/><br/>3.10 Extended Equal Area Criterion 103<br/><br/>3.11 Dynamics of a Synchronous Generator 104<br/><br/>Network Equations 104<br/><br/>Calculation of Initial Conditions 106<br/><br/>System Simulation 108<br/><br/>3.A Derivation of Electrical Torque 110<br/><br/>References 112<br/><br/>4 Modeling and Simulation of Wind Power Generators 115<br/><br/>4.1 Introduction 115<br/><br/>4.2 Power Extraction byWind Turbines 116<br/><br/>4.2.1 Wind Speed Characteristics 117<br/><br/>4.2.2 Control of Power Extraction 118<br/><br/>4.3 Generator and Power Electronic Configurations 120<br/><br/>4.3.1 Wind Farm Configurations 122<br/><br/>4.4 Modeling of the Rotating System 122<br/><br/>4.5 Induction Generator Model 124<br/><br/>4.5.1 Rotor Speed Instability 127<br/><br/>4.5.2 Modeling Issues 130<br/><br/>4.5.3 Frequency Conversion Using Voltage Source Converters 132<br/><br/>4.6 Control of Type IIIWTG System 133<br/><br/>4.6.1 Rotor-Side Converter Control 133<br/><br/>4.6.2 Grid-Side Converter Control 136<br/><br/>4.6.3 Overall Control Scheme for a Type III WTG system 137<br/><br/>4.6.4 Simplified Modeling of the Controllers for Slow Transient Studies 141<br/><br/>4.7 Control of Type IVWTG System 142<br/><br/>References 143<br/><br/>5 Modeling and Analysis of FACTS and HVDC Controllers 145<br/><br/>5.1 Introduction 145<br/><br/>5.2 FACTS Controllers 146<br/><br/>5.2.1 Description 146<br/><br/>5.2.2 A General Equivalent Circuit for FACTS Controllers 147<br/><br/>5.2.3 Benefits of the Application of FACTS Controllers 148<br/><br/>5.2.4 Application of FACTS Controllers in Distribution Systems 150<br/><br/>5.3 Reactive Power Control 150<br/><br/>Control Characteristics 153<br/><br/>5.4 Thyristor-Controlled Series Capacitor 153<br/><br/>5.4.1 Basic Concepts of Controlled Series Compensation 155<br/><br/>5.4.2 Operation of a TCSC 157<br/><br/>5.4.3 Analysis of a TCSC 158<br/><br/>5.4.4 Computation of the TCSC Reactance (XTCSC) 159<br/><br/>5.4.5 Control of the TCSC 161<br/><br/>5.5 Static Synchronous Compensator 166<br/><br/>5.5.1 General 166<br/><br/>5.5.2 Two-Level (Graetz Bridge) Voltage Source Converter 168<br/><br/>5.5.3 Pulse0020Width Modulation 169<br/><br/>5.5.4 Analysis of a Voltage Source Converter 171<br/><br/>5.5.5 Control of VSC 175<br/><br/>5.6 HVDC Power Transmission 177<br/><br/>5.6.1 Application of DC Transmission 178<br/><br/>5.6.2 Description of HVDC Transmission Systems 178<br/><br/>5.6.3 Analysis of a Line Commutated Converter 180<br/><br/>5.6.4 Introduction of VSC-HVDC Transmission 186<br/><br/>5.A Case Study of a VSC-HVDC Link 190<br/><br/>References 193<br/><br/>6 Damping of Power Swings 195<br/><br/>6.1 Introduction 195<br/><br/>6.2 Origin of Power Swings 196<br/><br/>6.3 SMIB Model with Field Flux Dynamics and AVR 199<br/><br/>6.3.1 Small-Signal Model and Eigenvalue Analysis 201<br/><br/>6.4 Damping and Synchronizing Torque Analysis 205<br/><br/>6.5 Analysis of Multi-Machine Systems 210<br/><br/>6.5.1 Electro-Mechanical Modes in a Multi-Machine System 210<br/><br/>6.5.2 Analysis with Detailed Models 216<br/><br/>6.6 Principles of Damping Controller Design 225<br/><br/>6.6.1 Actuator Location and Choice of Feedback Signals 229<br/><br/>6.6.2 Components of a PSDC 230<br/><br/>6.6.3 PSDCs based on Generator Excitation Systems: Power System Stabilizers 231<br/><br/>6.6.4 Adverse Torsional Interactions with the Speed/Slip Signal 237<br/><br/>6.6.5 Damping of Swings using Grid-Connected Power Electronic Systems 237<br/><br/>6.7 Concluding Remarks 241<br/><br/>6.A Eigenvalues of the Stiffness matrix K of Section 6.5.1 242<br/><br/>6.B Three-Machine Data 244<br/><br/>References 244<br/><br/>7 Analysis and Control of Loss of Synchronism 247<br/><br/>7.1 Introduction 247<br/><br/>7.2 Effect of LoS 247<br/><br/>7.3 Understanding the LoS Phenomenon 249<br/><br/>7.4 Criteria for Assessment of Stability 251<br/><br/>7.5 Power System Modeling and Simulation for Analysis of LoS 252<br/><br/>7.5.1 Effect of System Model 254<br/><br/>7.5.2 Effect of Changing Operating Conditions 255<br/><br/>7.6 Loss of Synchronism in Multi-Machine Systems 256<br/><br/>7.6.1 Effect of Disturbance Location on Mode of Separation: 258<br/><br/>7.6.2 Effect of the Load Model 258<br/><br/>7.6.3 Effect of Series Compensation in a Critical Line 260<br/><br/>7.6.4 Effect of a Change in the Pre-fault Generation Schedule 261<br/><br/>7.6.5 Voltage Phase Angular Differences across Critical Lines/Apparent Impedance seen by Relays 261<br/><br/>7.7 Measures to Avoid LoS 263<br/><br/>7.7.1 System Planning and Design 263<br/><br/>7.7.2 Preventive Control During Actual Operation 264<br/><br/>7.7.3 Emergency Control 264<br/><br/>7.8 Assessment and Control of LoS Using Energy Functions 265<br/><br/>7.8.1 Energy Function Method Applied to an SMIB System 266<br/><br/>7.8.2 Energy Function Method Applied to Multi-Machine Systems/Detailed Models 270<br/><br/>7.8.3 Evaluation of Critical Energy in a Multi-Machine System 274<br/><br/>7.9 Generation Rescheduling Using Energy Margin Sensitivities 274<br/><br/>7.9.1 Case Study: Generation Rescheduling 276<br/><br/>7.A Simulation Methods for Transient Stability Studies 276<br/><br/>7.A.1 Simultaneous Implicit Method 277<br/><br/>7.A.2 Partitioned Explicit Method 277<br/><br/>7.B Ten-Machine System Data 279<br/><br/>References 281<br/><br/>8 Analysis of Voltage Stability and Control 283<br/><br/>8.1 Introduction 283<br/><br/>8.2 Definitions of Voltage Stability 284<br/><br/>8.3 Comparison of Angle and Voltage Stability 286<br/><br/>8.3.1 Analysis of the SMLB System 287<br/><br/>8.4 Mathematical Preliminaries 290<br/><br/>8.5 Factors Affecting Instability and Collapse 292<br/><br/>8.5.1 Induction Motor Loads 292<br/><br/>8.5.2 HVDC Converter 293<br/><br/>8.5.3 Overexcitation Limiters 294<br/><br/>8.5.4 OLTC Transformers 295<br/><br/>8.5.5 A Nonlinear Dynamic Load Model 296<br/><br/>8.6 Dynamics of Load Restoration 296<br/><br/>8.7 Analysis of Voltage Stability and Collapse 298<br/><br/>8.7.1 Simulation 298<br/><br/>8.7.2 Small Signal (Linear) Analysis 298<br/><br/>8.8 Integrated Analysis of Voltage and Angle Stability 301<br/><br/>8.9 Analysis of Small Signal Voltage Instability Decoupled from Angle Instability 303<br/><br/>8.9.1 Decoupling of Angle and Voltage Variables 304<br/><br/>8.9.2 Incremental RCFN 305<br/><br/>8.9.3 Nonlinear Reactive Loads 306<br/><br/>8.9.4 Generator Model 306<br/><br/>Discussion 307<br/><br/>8.10 Control of Voltage Instability 308<br/><br/>References 308<br/><br/>9 Wide-AreaMeasurements and Applications 311<br/><br/>9.1 Introduction 311<br/><br/>9.2 Technology and Standards 311<br/><br/>9.2.1 Synchrophasor Definition 313<br/><br/>9.2.2 Reporting Rates 314<br/><br/>9.2.3 Latency and Data Loss 315<br/><br/>9.3 Modeling ofWAMS in Angular Stability Programs 315<br/><br/>9.4 Online Monitoring of Power Swing Damping 316<br/><br/>9.4.1 Modal Estimation based on Ringdown Analysis 317<br/><br/>9.4.2 Modal Estimation based on Probing Signals 319<br/><br/>9.4.3 Modal Estimation based on Ambient Data Analysis 323<br/><br/>9.5 WAMS Applications in Power Swing Damping Controllers 327<br/><br/>9.6 WAMS Applications in Emergency Control 330<br/><br/>9.7 Generator Parameter Estimation 335<br/><br/>9.8 Electro-MechanicalWave Propagation and Other Observations in Large Grids 335<br/><br/>References 338<br/><br/>10 Analysis of Subsynchronous Resonance 341<br/><br/>10.1 Introduction 341<br/><br/>10.2 Analysis of Electrical Network Dynamics 342<br/><br/>10.2.1 Equations in DQo Variables 344<br/><br/>10.2.2 Interfacing a DQ Network Model with a Generator Model 346<br/><br/>10.3 Torsional Dynamics of a Generator-Turbine System 353<br/><br/>10.3.1 Damping of Torsional Oscillations 359<br/><br/>10.3.2 Sensitivity of the Torsional Modes to the External Electrical System 360<br/><br/>10.4 Generator-Turbine and Network Interactions: Subsynchronous Resonance 362<br/><br/>10.4.1 Torsional Modes in Multi-Generator Systems 368<br/><br/>10.4.2 Adverse Interactions with Turbine-Generator Controllers 371<br/><br/>10.4.3 Detection of SSR/Torsional Monitoring 373<br/><br/>10.4.4 Countermeasures for Subsynchronous Resonance and Subsynchronous Torsional Interactions 374<br/><br/>10.4.5 Case Study: TCSC-Based SSDC 377<br/><br/>10.5 Time-InvariantModels of Grid-Connected Power Electronic Systems 378<br/><br/>10.5.1 Discrete-Time DynamicModels using the PoincaréMapping Technique 380<br/><br/>10.5.2 Dynamic Phasor-Based Modeling 380<br/><br/>10.5.3 Numerical Derivation of PES Models: A Frequency Scanning Approach 383<br/><br/>10.A Transfer Function Representation of the Network 385<br/><br/>References 386<br/><br/>11 Solar Power Generation and Energy Storage 391<br/><br/>11.1 Introduction 391<br/><br/>11.2 Solar Thermal Power Generation 392<br/><br/>11.3 Solar PV Power Generation 392<br/><br/>11.3.1 Solar Module I-V Characteristics 393<br/><br/>11.3.2 Solar PV Connections and Power Extraction Strategies 393<br/><br/>11.3.3 Power Electronic Converters for Solar PV Applications 395<br/><br/>11.3.4 Maximum Power Point Tracking Algorithms 397<br/><br/>11.3.5 Control of Grid-Connected Solar PV Plants 398<br/><br/>11.3.6 Low-Voltage Ride Through and Voltage Support Capability 400<br/><br/>11.4 Energy Storage 403<br/><br/>11.4.1 Attributes of Energy Storage Devices 404<br/><br/>11.4.2 Energy Storage Technologies 404<br/><br/>11.4.3 Mapping to Applications 406<br/><br/>11.4.4 Battery Modeling 410<br/><br/>References 412<br/><br/>12 Microgrids: Operation and Control 415<br/><br/>12.1 Introduction 415<br/><br/>12.2 Microgrid Concept 416<br/><br/>12.2.1 Definition of a Microgrid 416<br/><br/>12.2.2 Control System 417<br/><br/>12.3 Microgrid Architecture 419<br/><br/>12.4 Distribution Automation and Control 420<br/><br/>12.5 Operation and Control of Microgrids 421<br/><br/>12.5.1 DER Units 421<br/><br/>12.5.2 Microgrid Loads 423<br/><br/>12.5.3 DER Controls 423<br/><br/>12.5.4 Control Strategies under Grid-Connected Operation 425<br/><br/>12.5.5 Control Strategy for an Islanded Microgrid 427<br/><br/>12.6 Energy Management System 428<br/><br/>12.6.1 Microgrid Supervisory Control 429<br/><br/>12.6.2 Decentralized Microgrid Control based on a Multi-Agent System 430<br/><br/>12.6.3 IndustrialMicrogrid Controllers 431<br/><br/>12.7 Adaptive Network Protection in Microgrids 432<br/><br/>12.7.1 Protection Issues 433<br/><br/>12.7.2 Adaptive Protection 434<br/><br/>12.8 Dynamic Modeling of Distributed Energy Resources 435<br/><br/>12.8.1 Photovoltaic Array with MPP Tracker 435<br/><br/>12.8.2 Fuel Cells 437<br/><br/>12.8.3 Natural Gas Generator Set 438<br/><br/>12.8.4 Fixed-SpeedWind Turbine Driving SCIG 439<br/><br/>12.9 Some Operating Problems in Microgirds 442<br/><br/>12.10 Integration of DG and DS in a Microgrid 444<br/><br/>12.11 DC Microgrids 444<br/><br/>12.12 Future Trends and Conclusions 445<br/><br/>12.A A Three-Phase Model of an Induction Machine 448<br/><br/>References 452<br/><br/>A Equal Area Criterion 455<br/><br/>An Interesting Network Analogy 456<br/><br/>References 458<br/><br/>B Grid Synchronization and Current Regulation 459<br/><br/>Choice of Reference Frames 459<br/><br/>References 462<br/><br/>C Fryze–Buchbolz–Depenbrock Method for Load Compensation 463<br/><br/>C.1 Introduction 463<br/><br/>C.2 Description of FBDTheory 463<br/><br/>C.3 Power Theory in Multiconductor Circuits 466<br/><br/>Virtual Star Point 466<br/><br/>Collective Quantities 467<br/><br/>C.4 Examples 469<br/><br/>C.5 Load Characterization over a Period 470<br/><br/>C.6 Compensation of Non-Active Currents 471<br/><br/>Discussion 472<br/><br/>References 472<br/><br/>D Symmetrical Components and Per-Unit Representation 473<br/><br/>D.1 Symmetrical Component Representation of Three-Phase Systems 473<br/><br/>D.2 Per-Unit Representation 476<br/><br/>References 478<br/><br/>Index 479<br/>
520 ## - SUMMARY, ETC.
Summary, etc "Highlights the role of transmission and distribution grids that ensure the reliability and quality of electric power supply. - Original coverage of Analysis and Control of Loss of Synchronism including, Extended Equal Area Criterion (EEAC). - Timely and unique coverage of On-Line Detection of Loss of Synchronism, Wide Area Measurements and Applications, Wide-Area Feedback Control Systems for Power Swing Damping and Microgrids-Operation and Control. Market description (Please include secondary markets) Primary: Senior undergraduate and Ph.D. students on courses relating to power system dynamics and control/ electrical power industry professionals working on the planning, design and development of controls for enhancing grid performance. Secondary: Researchers in R&D laboratories connected with modernization and systems improvement of electricity supply systems"--Provided by publisher.
526 ## - STUDY PROGRAM INFORMATION NOTE
-- 600-699
-- 621
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on print version record and CIP data provided by publisher.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Electric power systems
General subdivision Control.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Electric power transmission.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Microgrids (Smart power grids)
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Kulkarni, Anil M.,
Relator term author.
856 ## - ELECTRONIC LOCATION AND ACCESS
Link text Full text available at Wiley Online Library Click here to view
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781119173410
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Source of acquisition Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY LIC Gateway 2021-03-29 Megatexts Phil. Inc. 50486 621.319 P134 2019 CL-50486 2021-03-29 2021-03-29 EBOOK