Power system control under cascading failures : (Record no. 60378)

000 -LEADER
fixed length control field 12420cam a2200481 i 4500
001 - CONTROL NUMBER
control field 20656088
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230217090251.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m |o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr |n|||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 180904s2019 nju o 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2018042297
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119282068 (ePub)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119282051 (Adobe PDF)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9781119282075
040 ## - CATALOGING SOURCE
Original cataloging agency DLC
Language of cataloging eng
Description conventions rda
Transcribing agency DLC
Modifying agency DLC
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng.
042 ## - AUTHENTICATION CODE
Authentication code pcc
050 00 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TK1007
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.317
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Preferred name for the person Sun, Kai,
Dates associated with a name 1976-
Relator term author.
245 10 - TITLE STATEMENT
Title Power system control under cascading failures :
Remainder of title understanding, mitigation, and system restoration /
Statement of responsibility, etc Kai Sun, Yunhe Hou, Wei Sun, Junjian Qi.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, NJ :
Name of publisher, distributor, etc John Wiley & Sons,
Date of publication, distribution, etc 2019.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (464 pages).
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
500 ## - GENERAL NOTE
General note Includes index.
500 ## - GENERAL NOTE
General note ABOUT THE AUTHOR<br/>KAI SUN is an Associate Professor with the Department of Electrical Engineering and Computer Science at the University of Tennessee, USA.<br/><br/>YUNHE HOU is an Associate Professor with the Department of Electrical and Electronic Engineering, University of Hong Kong.<br/><br/>WEI SUN is an Assistant Professor in the Department of Electrical and Computer Engineering of the University of Central Florida, USA.<br/><br/>JUNJIAN QI is an Assistant Professor in the Department of Electrical and Computer Engineering of the University of Central Florida, USA.
505 0# - CONTENTS
Formatted contents note About the Companion Website xiii<br/><br/>1 Introduction 1<br/><br/>1.1 Importance of Modeling and Understanding Cascading Failures 1<br/><br/>1.1.1 Cascading Failures 1<br/><br/>1.1.2 Challenges in Modeling and Understanding Cascading Failures 4<br/><br/>1.2 Importance of Controlled System Separation 6<br/><br/>1.2.1 Mitigation of Cascading Failures 6<br/><br/>1.2.2 Uncontrolled and Controlled System Separations 7<br/><br/>1.3 Constructing Restoration Strategies 9<br/><br/>1.3.1 Importance of System Restoration 9<br/><br/>1.3.2 Classification of System Restoration Strategies 10<br/><br/>1.3.3 Challenges of System Restoration 13<br/><br/>1.4 Overview of the Book 15<br/><br/>References 18<br/><br/>2 Modeling of Cascading Failures 23<br/><br/>2.1 General Cascading Failure Models 23<br/><br/>2.1.1 Bak–Tang–Wiesenfeld Sandpile Model 23<br/><br/>2.1.2 Failure‐Tolerance Sandpile Model 24<br/><br/>2.1.3 Motter–Lai Model 30<br/><br/>2.1.4 Influence Model 30<br/><br/>2.1.5 Binary‐Decision Model 33<br/><br/>2.1.6 Coupled Map Lattice Model 34<br/><br/>2.1.7 CASCADE Model 35<br/><br/>2.1.8 Interdependent Failure Model 37<br/><br/>2.2 Power System Cascading Failure Models 39<br/><br/>2.2.1 Hidden Failure Model 39<br/><br/>2.2.2 Manchester Model 40<br/><br/>2.2.3 OPA Model 42<br/><br/>2.2.4 Improved OPA Model 46<br/><br/>2.2.5 OPA Model with Slow Process 49<br/><br/>2.2.6 AC OPA Model 58<br/><br/>2.2.7 Cascading Failure Models Considering Dynamics and Detailed Protections 62<br/><br/>References 64<br/><br/>3 Understanding Cascading Failures 69<br/><br/>3.1 Self‐ Organized Criticality 70<br/><br/>3.1.1 SOC Theory 70<br/><br/>3.1.2 Evidence of SOC in Blackout Data 71<br/><br/>3.2 Branching Processes 72<br/><br/>3.2.1 Definition of the Galton–Watson Branching Process 74<br/><br/>3.2.2 Estimation of Mean of the Offspring Distribution 74<br/><br/>3.2.3 Estimation of Variance of the Offspring Distribution 75<br/><br/>3.2.4 Processing and Discretization of Continuous Data 78<br/><br/>3.2.5 Estimation of Distribution of Total Outages 81<br/><br/>3.2.6 Statistical Insight of Branching Process Parameters 81<br/><br/>3.2.7 Branching Processes Applied to Line Outage Data 82<br/><br/>3.2.8 Branching Processes Applied to Load Shed Data 84<br/><br/>3.2.9 Cross‐Validation for Branching Processes 85<br/><br/>3.2.10 Efficiency Improvement by Branching Processes 85<br/><br/>3.3 Multitype Branching Processes 87<br/><br/>3.3.1 Estimation of Multitype Branching Process Parameters 88<br/><br/>3.3.2 Estimation of Joint Probability Distribution of Total Outages 90<br/><br/>3.3.3 An Example for a Two‐Type Branching Process 91<br/><br/>3.3.4 Validation of Estimated Joint Distribution 92<br/><br/>3.3.5 Number of Cascades Needed for Multitype Branching Processes 94<br/><br/>3.3.6 Estimated Parameters of Branching Processes 96<br/><br/>3.3.7 Estimated Joint Distribution of Total Outages 98<br/><br/>3.3.8 Cross‐Validation for Multitype Branching Processes 100<br/><br/>3.3.9 Predicting Joint Distribution from One Type of Outage 102<br/><br/>3.3.10 Estimating Failure Propagation of Three Types of Outages 104<br/><br/>3.4 Failure Interaction Analysis 105<br/><br/>3.4.1 Estimation of Interactions between Component Failures 106<br/><br/>3.4.2 Identification of Key Links and Key Components 108<br/><br/>3.4.3 Interaction Model 111<br/><br/>3.4.4 Validation of Interaction Model 113<br/><br/>3.4.5 Number of Cascades Needed for Failure Interaction Analysis 115<br/><br/>3.4.6 Estimated Interaction Matrix and Interaction Network 119<br/><br/>3.4.7 Identified Key Links and Key Components 121<br/><br/>3.4.8 Interaction Model Validation 125<br/><br/>3.4.9 Cascading Failure Mitigation 129<br/><br/>3.4.10 Efficiency Improvement by Interaction Model 134<br/><br/>References 137<br/><br/>4 Strategies for Controlled System Separation 141<br/><br/>4.1 Questions to Answer 141<br/><br/>4.2 Literature Review 142<br/><br/>4.3 Constraints on Separation Points 144<br/><br/>4.4 Graph Models of a Power Network 148<br/><br/>4.4.1 Undirected Node‐Weighted Graph 149<br/><br/>4.4.2 Directed Edge‐Weighted Graph 152<br/><br/>4.5 Generator Grouping 153<br/><br/>4.5.1 Slow Coherency Analysis 154<br/><br/>4.5.2 Elementary Coherent Groups 158<br/><br/>4.6 Finding Separation Points 160<br/><br/>4.6.1 Formulations of the Problem 160<br/><br/>4.6.2 Computational Complexity 164<br/><br/>4.6.3 Network Reduction 167<br/><br/>4.6.4 Network Decomposition for Parallel Processing 173<br/><br/>4.6.5 Application of the Ordered Binary Decision Diagram 175<br/><br/>4.6.6 Checking the Transmission Capacity and Small Disruption Constraints 185<br/><br/>4.6.7 Checking All Constraints in Three Steps 190<br/><br/>References 192<br/><br/>5 Online Decision Support for Controlled System Separation 197<br/><br/>5.1 Online Decision on the Separation Strategy 197<br/><br/>5.1.1 Spectral Analysis-Based Method 198<br/><br/>5.1.2 Frequency‐Amplitude Characteristics of Electromechanical Oscillation 199<br/><br/>5.1.3 Phase‐Locked Loop-Based Method 204<br/><br/>5.1.4 Timing of Controlled Separation 210<br/><br/>5.2 WAMS‐ Based Unified Framework for Controlled System Separation 212<br/><br/>5.2.1 WAMS‐Based Three‐Stage CSS Scheme 212<br/><br/>5.2.2 Offline Analysis Stage 214<br/><br/>5.2.3 Online Monitoring Stage 216<br/><br/>5.2.4 Real‐Time Control Stage 221<br/><br/>References 223<br/><br/>6 Constraints of System Restoration 225<br/><br/>6.1 Physical Constraints During Restoration 225<br/><br/>6.1.1 Generating Unit Start‐Up 225<br/><br/>6.1.2 System Sectionalizing and Reconfiguration 230<br/><br/>6.1.3 Load Restoration 233<br/><br/>6.2 Electromagnetic Transients During System Restoration 235<br/><br/>6.2.1 Generator Self‐Excitation 237<br/><br/>6.2.2 Switching Overvoltage 237<br/><br/>6.2.3 Resonant Overvoltage in the Case of Energizing No‐Load Transformer 242<br/><br/>6.2.4 Impact of Magnetizing Inrush Current on Transformer 245<br/><br/>6.2.5 Voltage and Frequency Analysis in Picking up Load 247<br/><br/>References 251<br/><br/>7 Restoration Methodology and Implementation Algorithms 255<br/><br/>7.1 Algorithms for Generating Unit Start‐Up 255<br/><br/>7.1.1 A General Bilevel Framework 255<br/><br/>7.1.2 Algorithms for the Primary Problem 260<br/><br/>7.1.3 Algorithms for the Second Problem 265<br/><br/>7.2 Algorithms for Load Restoration 269<br/><br/>7.2.1 Estimate Operational Region Bound 271<br/><br/>7.2.2 Formulate MINLR Model to Maximize Load Pickup 272<br/><br/>7.2.3 Branch‐and‐Cut Solver: Design and Justification 275<br/><br/>7.2.4 Selection of Branching Methods 278<br/><br/>7.3 Case Studies 278<br/><br/>7.3.1 Illustrative Example for Restoring Generating Units 278<br/><br/>7.3.2 Optimal Load Restoration Strategies for RTS 24‐Bus System 283<br/><br/>7.3.3 Optimal Load Restoration Strategies for IEEE 118‐Bus System 287<br/><br/>References 291<br/><br/>8 Renewable and Energy Storage in System Restoration 295<br/><br/>8.1 Planning of Renewable Generators in System Restoration 295<br/><br/>8.1.1 Renewables for System Restoration 295<br/><br/>8.1.2 The Offline Restoration Tool Using Renewable Energy Resources 296<br/><br/>8.1.3 System Restoration with Renewables’ Participation 298<br/><br/>8.2 Operation and Control of Renewable Generators in System Restoration 305<br/><br/>8.2.1 Prerequisites of Type 3 WTs for System Restoration 307<br/><br/>8.2.2 Problem Setup of Type 3 WTs for System Restoration 308<br/><br/>8.2.3 Black‐Starting Control and Sequence of Type 3 WTs 314<br/><br/>8.2.4 Autonomous Frequency Mechanism of a Type 3 WT-Based Stand‐Alone System 317<br/><br/>8.2.5 Simulation Study 320<br/><br/>8.3 Energy Storage in System Restoration 323<br/><br/>8.3.1 Pumped‐Storage Hydro Units in Restoration 323<br/><br/>8.3.2 Batteries for System Restoration 332<br/><br/>8.3.3 Electric Vehicles in System Restoration 340<br/><br/>References 351<br/><br/>9 Emerging Technologies in System Restoration 357<br/><br/>9.1 Applications of FACTS and HVDC 357<br/><br/>9.1.1 LCC‐HVDC Technology for System Restoration 357<br/><br/>9.1.2 VSC‐HVDC Technology for System Restoration 363<br/><br/>9.1.3 FACTS Technology for System Restoration 370<br/><br/>9.2 Applications of PMUs 376<br/><br/>9.2.1 Review of PMU 376<br/><br/>9.2.2 System Restoration with PMU Measurements 378<br/><br/>9.3 Microgrid in System Restoration 385<br/><br/>9.3.1 Microgrid‐Based Restoration 385<br/><br/>9.3.2 Demonstration and Practice 388<br/><br/>References 393<br/><br/>10 Black-Start Capability Assessment and Optimization 399<br/><br/>10.1 Background of Black Start 399<br/><br/>10.1.1 Definition of Black Start 399<br/><br/>10.1.2 Constraints During BS 400<br/><br/>10.1.3 BS Service Procurement 401<br/><br/>10.1.4 Power System Restoration Procedure 403<br/><br/>10.2 BS Capability Assessment 404<br/><br/>10.2.1 Installation Criteria of New BS Generators 404<br/><br/>10.2.2 Optimal Installation Strategy of BS Capability 407<br/><br/>10.2.3 Examples 408<br/><br/>10.3 Optimal BS Capability 411<br/><br/>10.3.1 Problem Formulation 411<br/><br/>10.3.2 Solution Algorithm 418<br/><br/>10.3.3 Examples 421<br/><br/>References 431<br/><br/>Index 433<br/>
520 ## - SUMMARY, ETC.
Summary, etc Offers a comprehensive introduction to the issues of control of power systems during cascading outages and restoration process<br/><br/>Power System Control Under Cascading Failures offers comprehensive coverage of three major topics related to prevention of cascading power outages in a power transmission grid: modelling and analysis, system separation and power system restoration. The book examines modelling and analysis of cascading failures for reliable and efficient simulation and better understanding of important mechanisms, root causes and propagation patterns of failures and power outages. Second, it covers controlled system separation to mitigate cascading failures addressing key questions such as where, when and how to separate. Third, the text explores optimal system restoration from cascading power outages and blackouts by well-designed milestones, optimised procedures and emerging techniques. <br/><br/>The authors — noted experts in the field — include state-of-the-art methods that are illustrated in detail as well as practical examples that show how to use them to address realistic problems and improve current practices. This important resource:<br/><br/>Contains comprehensive coverage of a focused area of cascading power system outages, addressing modelling and analysis, system separation and power system restoration<br/>Offers a description of theoretical models to analyse outages, methods to identify control actions to prevent propagation of outages and restore the system<br/>Suggests state-of-the-art methods that are illustrated in detail with hands-on examples that address realistic problems to help improve current practices<br/>Includes companion website with samples, codes and examples to support the text<br/>Written for postgraduate students, researchers, specialists, planners and operation engineers from industry, Power System Control Under Cascading Failures contains a review of a focused area of cascading power system outages, addresses modelling and analysis, system separation, and power system restoration.
526 ## - STUDY PROGRAM INFORMATION NOTE
-- 600-699
-- 621
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on print version record and CIP data provided by publisher; resource not viewed.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Electric power systems
General subdivision Control.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Electric power system stability.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Electric power failures.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Hou, Yunhe,
Dates associated with a name 1975-
Relator term author.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Sun, Wei,
Dates associated with a name 1982-
Relator term author.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Qi, Junjian,
Dates associated with a name 1985-
Relator term author.
856 ## - ELECTRONIC LOCATION AND ACCESS
Link text Full text available at Wiley Online Library Click here to view
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781119282075
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Source of acquisition Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY LIC Gateway 2021-03-29 Megatexts Phil. Inc. 50483 621.317 Su711 2019 CL-50483 2021-03-29 2021-03-29 EBOOK