Infrared spectroscopy of diatomics for space observation / (Record no. 59778)

000 -LEADER
fixed length control field 07207nam a22003735i 4500
001 - CONTROL NUMBER
control field 19961735
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230216164717.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr an aaaaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 170823s2017 nju 000 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2017953145
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119476481
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119453314
040 ## - CATALOGING SOURCE
Original cataloging agency DLC
Language of cataloging eng
Description conventions rda
Transcribing agency DLC
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng.
042 ## - AUTHENTICATION CODE
Authentication code pcc
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 543.08583077
100 1# - MAIN ENTRY--PERSONAL NAME
Preferred name for the person Dahoo, Pierre Richard.
Relator term author.
245 10 - TITLE STATEMENT
Title Infrared spectroscopy of diatomics for space observation /
Statement of responsibility, etc Pierre Richard Dahoo, Azzedine Lakhlifi.
263 ## - PROJECTED PUBLICATION DATE
Projected publication date 1709
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, NJ :
Name of publisher, distributor, etc ISTE Ltd/John Wiley and Sons Inc,
Date of publication, distribution, etc 2017.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (240 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code n
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code nc
Source rdacarrier
500 ## - GENERAL NOTE
General note ABOUT THE AUTHOR<br/>Pierre Richard Dahoo, University of Versailles St Quentin (UVSQ), France Azzedine Lakhlifi, University of Franche-Comté, France
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note Foreword ix<br/><br/>Preface xi<br/><br/>Chapter 1. Generalities on Diatomic Molecules 1<br/><br/>1.1. Generalities on detecting diatomic molecules 2<br/><br/>1.1.1. Radiation–matter interaction for detection 2<br/><br/>1.1.2. Diatomic molecules: observation, analysis and interpretation 5<br/><br/>1.2. Hamiltonian of a diatomic molecule 9<br/><br/>1.3. Symmetry properties of a diatomic molecule 14<br/><br/>1.3.1. Group of symmetry 14<br/><br/>1.3.2. Symmetry of the electronic states 19<br/><br/>1.3.3. Symmetry of the total wave functions 22<br/><br/>1.4. Example of the diatomic molecule with two electrons H2, HD, D2 29<br/><br/>1.4.1. Hamiltonian of the isotopologues 29<br/><br/>1.4.2. BO approximation 32<br/><br/>1.4.3. Adiabatic representation 35<br/><br/>1.4.4. Diabatic representation 35<br/><br/>1.5. Conclusion 36<br/><br/>1.6. Appendix 37<br/><br/>Chapter 2. Energy Levels of a Diatomic Molecule in Gaseous Phase 41<br/><br/>2.1. Introduction 42<br/><br/>2.2. Pure vibration movement of a diatomic molecule 43<br/><br/>2.2.1. Harmonic oscillator: classical processing 44<br/><br/>2.2.2. Harmonic oscillator: quantum aspect 47<br/><br/>2.2.3. Transitions between two vibrational levels: selection rules 51<br/><br/>2.2.4. “Creation” and “annihilation” operators 54<br/><br/>2.2.5. Anharmonic oscillator 56<br/><br/>2.2.6. Contact transformation method 60<br/><br/>2.3. Rotation movement of a rigid diatomic molecule 67<br/><br/>2.3.1. Free rigid rotor: classical processing 67<br/><br/>2.3.2. Free rigid rotor: quantum aspect 68<br/><br/>2.3.3. Transitions between rotational levels: selection rules 72<br/><br/>2.4. Vibration–rotation coupling of a free diatomic molecule 73<br/><br/>2.4.1. Non-rigid rotor 73<br/><br/>2.4.2. Rovibrational transitions: selection rules 74<br/><br/>2.5. Appendix 76<br/><br/>2.5.1. The commutators 76<br/><br/>2.5.2. Expressions of pn and qn in terms of the operators a and a† 76<br/><br/>2.5.3. Matrix elements of pn and qn 77<br/><br/>2.5.4. Matrix of rotation and rotational transitions 80<br/><br/>Chapter 3. Profile and Shape of Spectral Lines 83<br/><br/>3.1. Introduction 84<br/><br/>3.2. Semiclassical model of calculating the broadening parameters of spectral lines 85<br/><br/>3.2.1. General description of the interacting physical system 85<br/><br/>3.2.2. General expression of the profile of a spectral line 86<br/><br/>3.2.3. Consequences of the invariance of the Zwanzig relaxation operator under rotation 91<br/><br/>3.2.4. Semiclassical context for calculating the relaxation matrix 93<br/><br/>3.2.5. Broadening parameter according to the diffusion operator 97<br/><br/>3.2.6. Calculation of the differential cross-section S(b, v) 98<br/><br/>3.2.7. Interaction potential energy 102<br/><br/>3.2.8. Relative trajectory of the molecules 107<br/><br/>3.2.9. Expression of S(b,v) in terms of resonance functions 112<br/><br/>3.3. True shape, profile and intensity of an absorption line 115<br/><br/>3.4. Line profile 116<br/><br/>3.4.1. Lorentz profile 117<br/><br/>3.4.2. Gauss profile 118<br/><br/>3.4.3. Voigt profile 119<br/><br/>3.4.4. Galatry, Nelkin–Ghatak and Rautian–Sobelmann profiles 120<br/><br/>3.5. Conclusion 121<br/><br/>3.6. Appendix 122<br/><br/>3.6.1. Liouville formalism 122<br/><br/>3.6.2. The Clebsch–Gordan coefficients and the Wigner 3j symbols 123<br/><br/>3.6.3. The terms of the differential cross-section expansion S(b,v) 124<br/><br/>Chapter 4. Energy Levels and Spectral Profile of a Diatomic Molecule in Condensed Phase 127<br/><br/>4.1. Introduction 127<br/><br/>4.2. Inclusion model 129<br/><br/>4.2.1. Binary interaction energy 130<br/><br/>4.2.2. Lakhlifi–Dahoo inclusion model 137<br/><br/>4.3. Rare gas nanocage 138<br/><br/>4.3.1. The rare gases in the solid state138<br/><br/>4.3.2. Dynamics of the perfect fcc lattice (Bravais lattice) 141<br/><br/>4.3.3. Green function of the perfect monoatomic crystal 144<br/><br/>4.4. Inclusion of a molecule in a rare gas matrix 145<br/><br/>4.4.1. Deformation method 145<br/><br/>4.4.2. Equilibrium of the doped crystal 148<br/><br/>4.5. General Hamiltonian and separation of the movements 150<br/><br/>4.5.1. Hamiltonian of the system 150<br/><br/>4.5.2. Separation of the optical system’s movements and the bath in the rigid matrix approximation 152<br/><br/>4.5.3. Vibrational mode 153<br/><br/>4.5.4. Orientational modes 155<br/><br/>4.5.5. Active optical system 163<br/><br/>4.5.6. Translational modes 163<br/><br/>4.5.7. Optical modes – bath coupling 166<br/><br/>4.6. Infrared absorption coefficient 167<br/><br/>4.6.1. General expression 167<br/><br/>4.6.2. Heisenberg representation 168<br/><br/>4.6.3. Averages and correlation functions 172<br/><br/>4.6.4. Bar spectrum or Dirac spectrum 174<br/><br/>4.6.5. Spectral profile 175<br/><br/>4.7. Conclusion 176<br/><br/>4.8. Appendix 177<br/><br/>4.8.1. Expression of the dispersion–repulsion contribution of the energy of truncated binary interaction in the fourth order 177<br/><br/>4.8.2. Rotation matrix 178<br/><br/>4.8.3. Eigenvalues correction of the orientation Hamiltonian 178<br/><br/>4.8.4. Eigenvalues correction of the orientation Hamiltonian 178<br/><br/>Chapter 5. Applications to HCl, CO, O2 and N2 179<br/><br/>5.1. The HCl heteronuclear molecule isolated and trapped in a matrix 179<br/><br/>5.1.1. Molecule in the gaseous phase 179<br/><br/>5.1.2. Molecule trapped in rare gas matrix 181<br/><br/>5.2. Lidar probing of terrestrial homonuclear molecules N2 and O2 183<br/><br/>5.3. The heteronuclear molecule CO trapped in a matrix and absorbed on graphite substrate (1000) at a low temperature 187<br/><br/>5.3.1. Molecule trapped in a rare gas matrix 187<br/><br/>5.3.2. Molecule adsorbed on the graphite substrate 189<br/><br/>5.3.3. Molecule–graphite interaction energy 191<br/><br/>5.3.4. Adsorption observables at a low temperature 192<br/><br/>5.4. Conclusion 196<br/><br/>Bibliography 197<br/><br/>Index 207
520 ## - SUMMARY, ETC.
Summary, etc This book describes different theoretical models developed to identify the near and mid infrared (IR) spectra of diatomic molecules isolated in the gas phase or subjected to environmental constraints, useful for the study of environmental sciences, planetology and astrophysics.<br/><br/>The applications presented show how molecular interactions modify the near and mid IR spectra of isolated diatomics under the effect of pressure, a nano-cage (substitution site, Clathrate, Fullerene, Zeolite) or surfaces, to identify the characteristics of the perturbing environment.
526 ## - STUDY PROGRAM INFORMATION NOTE
-- 500-599
-- 543
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
856 ## - ELECTRONIC LOCATION AND ACCESS
Link text Full text available at Wiley Online Library Click here to view
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781119453314
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Source of acquisition Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY LIC Gateway 2021-03-23 Megatexts Phil. Inc. 50433 543.08583077 D139 2017 50433 2021-03-23 2021-03-23 EBOOK